K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

m.n ơi giúp mk 1 hoặc 2 câu đc ko ạ mk cần gấp lắm mà mk ko bt cách lm

27 tháng 5 2021

Đoán đề: \(\dfrac{x^2-1}{\left(x+1\right)\left(x^2-x-6\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-3\right)\left(x+2\right)}\ge0\)

Xét x-1=0 <=> x=1

x+1=0 <=> x=-1

x-3=0 <=> x=3

x+2=0 <=>x=-2

Bảng xét dấu:

x -2 -1 1 3 -vc +vc x-1 x+2 x-3 x+1 VT 0 0 0 0 0 + + + + - - - - + + + + + - - - - - - + + + - + - - +

Để VT \(\ge0\) <=> x\(\in\left(-2;-1\right)\cup\left(3;+\infty\right)\cup\left\{1\right\}\) 

27 tháng 5 2021

TH1: `m=0 `

`2x>0 <=> x>0`

`=>` Không thỏa mãn.

TH2: `m>0`

Bất PT có tập nghiệm là `RR <=> \Delta'<0`

`<=> (m-1)^2-m.4m<0`

`<=> m<-1 ; 1/3 <m`

Vậy `m in (0;+∞)` thỏa mãn.

27 tháng 5 2021

TH1 là m=0 thì TH2 là \(m\ne0\)

Bpt có tập nghiệm là R <=> \(\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)

Đáp án: m\(\in\left(\dfrac{1}{3};+\infty\right)\)

13 tháng 9 2021

P(x) = (x - a) (x- a - 2015). g(x) => P(x) chẵn với mọi x

Q(x) = (x - 2014) h(x) + 2016 -> Q(P(x)) = (P(x) - 2014 ).H(P(x)) + 2016 chia hết cho 2 nên Q(P(x) = 1 sẽ không thể có nghiêm nguyên

 

9 tháng 7 2021

 

Điều kiện xác định x∈Rx∈R.

Đặt t=√x2+1 (t≥1t≥1)

Phương trình trở thành t2−1−4t−m+1=0

⇔t2−4t=m

⇔t2−4t=m. (1)

Để phương trình có 44 nghiệm phân biệt thì phương trình (1) có hai nghiệm phân biệt lớn hơn 11.

Xét hàm số f(t)=t2−4t có đồ thị là parabol có hoành độ đỉnh x=2∈(1;+∞) nên ta có bảng biến thiên:

Dựa BBT ta thấy để (1) có hai nghiệm phân biệt lớn hơn 11 thì −4<m<−3

Vậy không có giá trị nguyên của mm thỏa mãn yêu cầu bài toán.

9 tháng 7 2021

mik có ghi thừa 1 dòng ⇔t2-4t=m bạn nhé

 

NV
11 tháng 11 2021

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)