K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

AH
Akai Haruma
Giáo viên
16 tháng 7 2023

Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$

$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$

Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0

$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$

$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$

Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6

$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)

4 tháng 9 2023

chắc khó qué nên ko ai lm cho tớ hic😥

4 tháng 9 2023

Bạn ơi, mình nghĩ là bạn nên chia các bài ra từng CH khác nhau, như vậy các TV sẽ dễ giúp đỡ bạn hơn và chất lượng ctrl có thể tốt hơn bạn nhé.

16 tháng 2 2020

+) Với n = 1 thì \(a^2+b^2=c^2\)(đúng với định lý Pythagoras)

+) Với n = 2 thì \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)(đúng với n = 2)

Giả sử \(a^{2n}+b^{2n}\le c^{2n}\)

Ta sẽ chứng minh điều đó đúng với n + 1.

Ta có: \(a^{2n+2}+b^{2n+2}=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\)

\(\le c^{2n}.c^2-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}-a^2.b^{2n}-a^{2n}.b^2< c^{2n+2}\)

Vậy BĐT đúng với n + 1

Vậy bđt đúng với mọi n > 0

Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)

12 tháng 2 2018

Áp dụng định lý PITAGO :

Ta có : \(c^2=a^2+b^2\)

Nhân cả 2 vế với n thì ta có :

\(\Rightarrow\)\(a^{2n}+b^{2n}=c^{2n}\)

Vậy \(a^{2n}+b^{2n}=c^{2n}\left(ĐPCM\right)\)

2 tháng 3 2018

Làm đúng cho sai không công bằng cút nào nhé trẩu