Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q=\(\frac{a}{\sqrt{a^2-b^2}}-\frac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\times\frac{a-\sqrt{a^2-b^2}}{b}\)
Q=\(\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
Q= \(\frac{a+b}{\sqrt{a^2-b^2}}\)
Q=\(\frac{\sqrt{a+b}}{\sqrt{a-b}}\)
\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}\)
\(A=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right).\frac{a}{\sqrt{a}+1}\)
\(A=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right).\frac{a}{\sqrt{a}+1}\)
\(A=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}\)
\(A=\left(\sqrt{a}-1\right).\sqrt{a}\)
\(A=a-\sqrt{a}\)
A=\(\left(\frac{\sqrt{a}\left(\sqrt{a}\right)-1}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a}+1}{a}\)= \(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\):\(\frac{\sqrt{a}+1}{a}\)=
=\(\left(\frac{a-1}{\sqrt{a}}\right)\). \(\frac{a}{\sqrt{a}+1}\)= \(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)\(\frac{a}{\sqrt{a}+1}\)= \(\frac{\sqrt{a}-1}{\sqrt{a}}\)
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
\(Q=\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x^3}-\sqrt{y^3}}{x-y}\)
\(Q=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(Q=\frac{x\sqrt{x}-y\sqrt{x}+x\sqrt{y}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(Q=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(Q=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(R=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(R=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right].\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(R=\left(1+\sqrt{a}+a\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2.\left(1+\sqrt{a}\right)^2}\)
\(=\left(1+\sqrt{a}\right)^2.\frac{1}{\left(1+\sqrt{a}\right)^2}=1\)
Bạn xem có nhầm đề bài không phải là\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}\) thế mới sử dụng đc trục căn thức ở mẫu
\(\left(1+\sqrt{a}\right)^2.\frac{1}{1+\sqrt{a}}=1+\sqrt{a}\)