K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2016

Giải tiếp(ko chép đề)

= 1/1 - 1/2 - 1/3 - 1/4 + 1/2 - 1/3 - 1/4 - 1/5 + ... + 1/27 - 1/28 - 1/29 - 1/30

= 1 - 1/30

= 29/30

ks nha 

10 tháng 4 2016

Bài giải :(không chép đề)

=1-1/2-1/3-1/4-1/5+1/2-1/3-1/4-1/5+........+1/27-1/28-1/29-1/30

=1-1/30

=29/30

Vậy số cần tìm là:29/30 Suy ra Y=29/30

7 tháng 3 2016

a)\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+....+\(\frac{1}{100.101}\)=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+....+\(\frac{1}{100}\)-\(\frac{1}{101}\)=1-\(\frac{1}{101}\)=\(\frac{100}{101}\)

b)\(\frac{1}{1.2.3}\)+\(\frac{1}{2.3.4}\)+....+\(\frac{1}{28.29.30}\)=\(\frac{868}{3480}\)=\(\frac{217}{870}\)

c)\(\frac{1}{1.2.3.4}\)+\(\frac{1}{2.3.4.5}\)+....+\(\frac{1}{27.28.29.30}\)=\(\frac{24354}{438480}\)=\(\frac{451}{8120}\)

7 tháng 7 2018

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{47.48.49.50}\)

\(=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{47.48.49}-\frac{1}{48.49.50}\right)\)

\(=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{48.49.50}\right)\)

\(=\frac{1}{3}\cdot\frac{6533}{39200}=\frac{6533}{117600}\)

14 tháng 7 2016

\(\frac{49}{50}nha\)

24 tháng 7 2018

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+....+\frac{1}{27.28.29.30}\)

\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+....+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)

\(=\frac{451}{8120}\)

10 tháng 5 2015

Nhận xét: 1/1.2.3 - 1/2.3.4 = 3/1.2.3.4, 1/2.3.4 - 1/3.4.5 =3/2.3.4.5,...,1/27.28.29 - 1/28.29.30

Gọi biểu thức phải tính bằng A,ta tính được:

3A=1/2.3 - 1/28.29.30 = 4059/28.29.30

vậy A = 1353/8120

29 tháng 12 2016

Ket quả cua mình là 451/8120

5 tháng 6 2015

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)

5 tháng 4 2017

        \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)

\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+ \frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\frac{161699}{970200}=\frac{161699}{299106000}\)