Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)+xyz\ge0\)
\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz+xyz\ge0\)
\(\Leftrightarrow xy+yz+zx\ge2\)
Mặt khác \(x+y+z=3\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)
\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\le5\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị
\(0\le x,y,z\le2\Leftrightarrow xyz+\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)
\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow xy+yz+xz\ge2\)
xét \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+xz\right)=9-2\left(xy+yz+xz\right)\le9-2.2=5\)
Dấu = xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\)và các hoán vị
Ta có \(\left(2-x\right)\left(2-y\right)\left(2-z\right)>0\to8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz>0\)
Suy ra \(2\left(x+y+z\right)-\left(xy+yz+zx\right)<\frac{8-xyz}{2}<4.\)
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mk mong các bn đừng làm như vậy
Từ giả thiết suy ra : \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Do đó : \(x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz},y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz},z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)
Suy ra : ( x- y ) ( y - z ) ( z - x ) = \(\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
nên ( x - y ) ( y - z ) ( z - x ) ( x2y2z2 - 1 ) = 0
từ đây bạn giải được rồi đó ( xét các TH = 0 thôi )