K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

cái này mà là toán lớp 10 à ?? ? batngo

9 tháng 8 2018

Oh my god!

Nhìn đề mà méo hiểu gì đang xảy ra ở thế giới này!

NV
23 tháng 9 2020

\(B=1!+2.2!+3.3!+...+k.k!\)

\(=1!+\left(3-1\right)2!+\left(4-1\right)3!+...+\left(k+1-1\right)k!\)

\(=1!+3!-2!+4!-3!+...+\left(k+1\right)!-k!\)

\(=\left(k+1\right)!-1\)

\(C=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{n}{n!}-\frac{1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

NV
23 tháng 9 2020

2.

Với \(n=0\Rightarrow1\ge\frac{1}{2}\) đúng

Với \(n=1\Rightarrow1\ge1\) đúng

Giả sử BĐT đúng với \(n=k\ge2\) hay \(k!\ge2^{k-1}\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(\left(k+1\right)!\ge2^k\)

Thật vậy, ta có:

\(\left(k+1\right)!=k!\left(k+1\right)\ge2^{k-1}.\left(k+1\right)>2^{k-1}.2=2^k\) (đpcm)

3 tháng 4 2018

Ta có: \(VT=x-\dfrac{xyz}{yz+1}+y-\dfrac{xyz}{xz+1}+z-\dfrac{xyz}{xy+1}\)

\(=x+y+z-xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\)

Ta sẽ chứng minh BĐt sau :

\(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\ge xyz\)

hay \(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}-1\right)\ge0\)

Mà đây là 1 điều luôn đúng vì \(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\ge\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{x^2+y^2+z^2+3}>1\)\(xyz\ge0\)

Do đó \(VT\le x+y+z-xyz=x\left(1-yz\right)+y+z\)(*)

Áp dụng BĐt bunyakovsky:

\(VT^2=\left[x\left(1-yz\right)+\left(y+z\right).1\right]^2\le\left[x^2+\left(y+z\right)^2\right]\left[1+\left(1-yz\right)^2\right]\)\(=\left(2+2yz\right)\left(y^2z^2-2yz+2\right)=4+2y^2z^2\left(yz-1\right)\le4\)

( do \(yz\le\dfrac{y^2+z^2}{2}\le\dfrac{x^2+y^2+z^2}{2}=1\))

\(\Rightarrow VT\le2\) (đpcm)

Dấu = xảy ra khi \(x=0;y=z=1\) cùng các hoán vị

P/s: Từ chỗ (*) là 1 BĐT có nhiều cách chứng minh .

10 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{x^4}{y+3z}+\dfrac{y+3z}{16}+\dfrac{1}{4}+\dfrac{1}{4}\ge4\sqrt[4]{\dfrac{x^4}{y+3z}\cdot\dfrac{y+3z}{16}\cdot\dfrac{1}{4}\cdot\dfrac{1}{4}}=x\)

\(\Rightarrow\dfrac{x^4}{y+3z}\ge x-\dfrac{y+3z}{16}-\dfrac{1}{2}\)

Tương tự cho 2 BĐT còn lại:

\(\dfrac{y^4}{z+3x}\ge y-\dfrac{z+3x}{16}-\dfrac{1}{2};\dfrac{z^4}{x+3y}\ge z-\dfrac{x+3y}{16}-\dfrac{1}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-\dfrac{3}{2}\ge\dfrac{3}{4}\cdot3-\dfrac{3}{2}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

11 tháng 6 2017

Cách khác:

\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4.\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{\sqrt{\left(x^2+y^2+z^2\right)^3}}{4\sqrt{3}}\)

\(\ge\dfrac{\sqrt{\left(xy+yz+zx\right)^3}}{4\sqrt{3}}\ge\dfrac{3\sqrt{3}}{4\sqrt{3}}=\dfrac{3}{4}\)

Dấu = xảy ra khi \(x=y=z=1\)

10 tháng 11 2017

mọi người giúp em vs

7 tháng 6 2017

\(\Sigma\left(\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\le3\)

\(\Leftrightarrow\Sigma\left(\dfrac{x^2+y^2+z^2}{x^5+y^2+z^2}\right)\le3\)

\(\Leftrightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{3}{x^2+y^2+z^2}\)

Áp dụng bất đẳng thức Bunyakovsky

\(\Rightarrow\left(x^5+y^2+z^2\right)\left(\dfrac{1}{x}+y^2+z^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}\le\dfrac{\dfrac{1}{x}+y^2+z^2}{\left(x^2+y^2+z^2\right)^2}\)

Thiết lập tương tự và thu lại ta có

\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)

Chứng minh rằng \(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{3}{x^2+y^2+z^2}\)

\(\Leftrightarrow\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le x^2+y^2+z^2\) ( vì \(xyz=1\) )

\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\) ( luôn đúng theo hệ quả của bất đẳng thức Cauchy )

\(\Rightarrow\) đpcm

Dấu " = " xảy ra khi \(x=y=z=1\)

22 tháng 6 2018

Ta có \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y+z\right)=xy\left(x+y+z\right)\)

Tương tự ta có

\(VT\ge\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}+\dfrac{\sqrt{yz\left(x+y+z\right)}}{yz}+\dfrac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)

\(=\sqrt{x+y+z}.\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)

\(\ge\sqrt{3\sqrt[3]{xyz}}.\dfrac{3\sqrt[6]{xyz}}{1}=3\sqrt{3}\)

\("="\Leftrightarrow x=y=z=1\)

24 tháng 2 2020

\(VT=x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\sqrt{3\left(x^2+y^2+z^2\right)}}=3\)

Vậy BĐT được chứng minh . Dấu = xảy ra khi \(a=b=c=1\)