Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5\cdot3-4+3\cdot\left(-2\right)}=\dfrac{-16}{5}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-48}{5}\\y=\dfrac{-64}{5}\\z=\dfrac{32}{5}\end{matrix}\right.\)
1, \(x\div y\div z=3\div8\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{x}{3}=\frac{y}{8}=\frac{z}{10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot8=16\\z=2\cdot5=10\end{cases}}\)
vậy_
các phần sau tương tự
1, \(x:y:z=3:8:5;3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\\\frac{y}{8}=2\Rightarrow y=16\\\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\end{cases}}\)
Vậy....
2, \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3};4x-3y-2z=36\)
\(\Rightarrow\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=\frac{-36}{8}=\frac{-9}{4}\)
Làm tương tự để tìm x;y;z
3, \(x:y:z=3:5:\left(-2\right);5x-y+3z=124\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{\left(-2\right)}\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{15}=31\Rightarrow5x=465\Rightarrow x=93\\\frac{y}{5}=31\Rightarrow y=155\\\frac{3z}{-6}=31\Rightarrow3z=-186\Rightarrow z=-62\end{cases}}\)
Vậy .....
x : y : z = 3 : 5 :( -2 )
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{4}=-4\)
\(\Rightarrow x=-12;y=-20;z=8\)
<=> x/3 = y/5 = z/(-2)
= 5x/15 = y/5 = 3z/(-6)
= (5x-y+3z)/ [15-5+(-6)] (theo t/c của dãy tỷ số bằng nhau)
=124/4
= 31
Vậy: x = 31 . 3 = 93
y = 31 . 5 = 155
z = 31 . (-2) = - 62
Ta co : x:y:z=3:5:-2
hay x/3=y/5=z/-2
ma 5x-y+3z=124
Theo t/c cua day ti so bang nhau , ta co
x/3=y/5=z/-2=5x/15-y/5+3z/-6=124/4
=31
\(\Rightarrow\)x/3=31\(\Rightarrow\)x=93\(\Rightarrow\)
\(\Rightarrow\)z/-2=31\(\Rightarrow\)z=-62
\(\Rightarrow\)y/5=31 \(\Rightarrow\) y=155