K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 5 2024

Đề không rõ ràng. Bạn xem lại.

14 tháng 4 2019

17 tháng 6 2017

31 tháng 8 2018

tag ko co thong bao de mai t nghien cuu

1 tháng 9 2018

Bài này cái khó là sử lý điều kiện thôi nên t làm phần đó thôi nhé.

Từ điều kiện suy ra được.

log\(\sqrt{3}\)(3x + 3y) + (3x + 3y) = log\(\sqrt{3}\)(x2 + y2 + xy + 2) + (x2 + y2 + xy + 2)

Dễ thấy hàm số f(t) = log\(\sqrt{3}\)(t) + t đồng biến trên (0; +\(\infty\)) nên

=> 3x + 3y = x2 + y2 + xy + 2

NV
20 tháng 9 2020

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)=2\left(x+y\right)^2+2\left(x^2+y^2\right)+1\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\x^2+y^2=b>0\end{matrix}\right.\) với \(a^2\le2b\)

\(\Rightarrow ab=2a^2+2b+1\)

\(\Leftrightarrow b\left(a-2\right)=2a^2+1\)

- Với \(a=2\) ko thỏa mãn

- Với \(a\ne2\Rightarrow b=\frac{2a^2+1}{a-2}=2\left(a+2\right)+\frac{9}{a-2}\)

\(\Rightarrow a-2=Ư\left(9\right)=\left\{-9;-1;1;9\right\}\Rightarrow a=\left\{-7;1;3;11\right\}\)

\(\Rightarrow b=\left\{-11;-3;19;27\right\}\)

Kết hợp điều kiện \(\left\{{}\begin{matrix}b\ge0\\a^2\le2b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=19\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\x^2+y^2=19\end{matrix}\right.\) ko tồn tại x, y nguyên thỏa mãn

27 tháng 2 2021

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y}\). khi đó gt trở thành:

\(a+b=a^2+b^2-ab\ge\dfrac{1}{4}\left(a+b\right)^2\Leftrightarrow o\le a+b\le4\);

\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(a+b\right)^2\le16\)

Đẳng thức xảy ra khi và chỉ khi a=b=2 <=> x=y=1/2

Vậy Max A = 16

8 tháng 1

huh ko biet

13 tháng 9 2019

Có: \(\left\{{}\begin{matrix}x^4+y^2\ge2x^{2y}\\x^2+y^4\ge2xy^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{x^4+y^2}\le\frac{x}{2x^{2y}}\\\frac{y}{x^2+y^4}\le\frac{y}{2xy^2}\end{matrix}\right.\)

Mà xy = 1 \(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2x^{2y}}=\frac{x}{2x}=\frac{1}{2}\\\frac{y}{2xy^2}=\frac{y}{2y}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le\frac{1}{2}+\frac{1}{2}=1\)

Vậy GTLN của A = 1

\("="\Leftrightarrow x=y=1\)

P/s: Bài này em không chắc chắn lắm, nhờ chị Akai Haruma kiểm tra giúp ạ.

NV
17 tháng 9 2019

\(xy=1\Rightarrow y=\frac{1}{x}\)

\(A=\frac{x}{x^4+\left(\frac{1}{x}\right)^2}+\frac{\frac{1}{x}}{x^2+\left(\frac{1}{x}\right)^4}=\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=\frac{2x^3}{x^6+1}\le\frac{2x^3}{2\sqrt{x^6.1}}=\frac{2x^3}{2\left|x^3\right|}\le1\)

\(\Rightarrow A_{max}=1\) khi \(x=y=1\)

NV
22 tháng 6 2019

ĐKXĐ: \(x\ne y\)

\(log_xy=\frac{1}{log_xy}\Leftrightarrow log_x^2y=1\Leftrightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y\left(l\right)\\x=\frac{1}{y}\end{matrix}\right.\)

\(log_x\left(x-\frac{1}{x}\right)=log_{x^{-1}}\left(x+\frac{1}{x}\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+\frac{1}{x}\right)\)

\(\Leftrightarrow log_x\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=1\)

\(\Leftrightarrow x^2-\frac{1}{x^2}=1\Leftrightarrow x^4-x^2-1=0\Rightarrow x^2=\frac{1+\sqrt{5}}{2}\Rightarrow y^2=\frac{1}{x^2}=\frac{-1+\sqrt{5}}{2}\)

\(\Rightarrow x^2+xy+y^2=\frac{1+\sqrt{5}}{2}+1+\frac{-1+\sqrt{5}}{2}=\sqrt{5}+1\)

NV
15 tháng 8 2020

\(\left(x+y\right)xy=x^2+y^2-xy\)

\(\Leftrightarrow\left(x+y\right)xy=\left(x+y\right)^2-3xy\)

Đặt \(x+y=t\Rightarrow xy=\frac{t^2}{t+3}\)

Lại có \(\left(x+y\right)^2\ge4xy\Rightarrow t^2\ge\frac{4t^2}{t+3}\)

\(\Leftrightarrow t^2\left(\frac{t-1}{t+3}\right)\ge0\Rightarrow\left[{}\begin{matrix}t\ge1\\t< -3\end{matrix}\right.\)

\(A=\frac{x^3+y^3}{\left(xy\right)^3}=\frac{\left(x+y\right)\left(x^2+y^2-xy\right)}{\left(xy\right)^3}=\frac{\left(x+y\right)\left(x+y\right)xy}{\left(xy\right)^3}=\left(\frac{x+y}{xy}\right)^2\)

\(A=\left(\frac{t\left(t+3\right)}{t^2}\right)^2=\left(\frac{t+3}{t}\right)^2=\left(1+\frac{3}{t}\right)^2\)

\(\Rightarrow y'=-\frac{6\left(t+3\right)}{t^3}< 0\) \(\forall t\ge1;t< -3\)

\(\lim\limits_{x\rightarrow-\infty}\left(1+\frac{3}{t}\right)^2=1\Rightarrow A_{max}=A\left(1\right)=16\)

\(\Rightarrow M=16\) khi \(x=y=\frac{1}{2}\)

3 tháng 9 2021

Từ gt ta có x^2+y^^2=xy+1

=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2

=(xy+1)2-2x2y2-x2y2

=x2y2+xy+1-3x2y2=-2x2y2+xy+1

=......

NV
6 tháng 9 2021

\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)

\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)

\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)

Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)

\(P=f\left(t\right)=-2t^2+2t+1\)

\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)