Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)
Xét dấu nó thì e chỉ cần xét từng cái là được
Cái thứ nhất:
\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow xz=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)
Cái thứ 2:
\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)
\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)
Kết hợp cả 2 điều kiện thì suy ra được
\(x=z=0;y=3\)
a) Do x.y=10 => x=5;2 và y=2;5
b) x(y+1)=9 => xy+x=9 => x= 3;y=2
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Chia cả hai vế cho cùng một số
Đơn giản biểu thức
Lời giải thu được
Ẩn lời giải
Kết quả: Giải phương trình với tập xác định
đây là bài toán ko ai giải đc tuy nhiên mk bít sẽ có 1 trong thế giới này giải đc trong hiện tại hoặc tương lai cố nhé
\(a,\frac{x}{2}=\frac{y}{7}\)và \(x-2y=\left(-24\right)\)
\(\Rightarrow\frac{x}{2}-\frac{2y}{7\cdot2}=\frac{x-2y}{2-14}=\frac{-24}{-12}=2\)
\(\Rightarrow\)\(\frac{x}{2}=2\Rightarrow x=4\)
\(\Rightarrow\frac{y}{7}=2\Rightarrow y=14\)
mấy câu còn lại tương tự
mik giải câu c) thôi nha
c) Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{-1}{-1}=1\)
Do đó :
\(\frac{x}{2}=1=>x=1.2=2\)
\(\frac{y}{5}=1=>x=1.5=5\)
Vậy x = 2, y = 5
x+x+x+x-y+x+y+y+y+y+x+a+b+c+a=0
x+x+xx-y+x+y+y+y+y++x+a+b+c+a=00