Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào cái link này hơ !
http://www.baigiangtoanhoc.com/xem-khoa-hoc/368-Bai-giang-so-5-Vi-tri-tuong-doi-giua-hai-duong-tron-trong-he-toa-do-Oxy.html
a, Phương trình đường thẳng AB: \(\dfrac{x-3}{2}=\dfrac{y-4}{6}\Leftrightarrow3x-y-5=0\)
Trung điểm I của AB có tọa độ: \(\left\{{}\begin{matrix}x_I=\dfrac{1+3}{2}=2\\y_I=\dfrac{4-2}{2}=1\end{matrix}\right.\Rightarrow I=\left(2;1\right)\)
Phương trình trung trực của AB: \(x+3y-5=0\)
Giả sử \(O=\left(5-3m;m\right)\) là tâm đường tròn
Ta có: \(OA=5\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow2m^2-4m-1=0\)
\(\Leftrightarrow m=\dfrac{2\pm\sqrt{6}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\\O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\end{matrix}\right.\)
TH1: \(O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\)
TH2: \(O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
Kết luận: Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\) hoặc \(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
b, Phương trình đường thẳng AC: \(x+y+1=0\)
Phương trình đường thẳng OA: \(x-y-3=0\)
Giả sử \(O=\left(m;m-3\right)\) là tâm đường tròn
Ta có: \(OA=OB\Leftrightarrow\left(1-m\right)^2+\left(1-m\right)^2=\left(3-m\right)^2+\left(7-m\right)^2\)
\(\Leftrightarrow m=\dfrac{7}{2}\)
\(\Rightarrow O=\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)
Bán kính: \(R=OA=\sqrt{\left(1-\dfrac{7}{2}\right)^2+\left(-2-\dfrac{1}{2}\right)^2}=\dfrac{5\sqrt{2}}{2}\)
Phương trình đường tròn:
\(\left(x-\dfrac{7}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{25}{2}\)
Người ra đề chắc hơi lộn xộn một chút về kí hiệu các điểm, vì điểm \(A\left(1;2\right)\) chắc chắn không liên quan gì đến điểm A trong "cắt đường tròn tại 2 điểm AB" (vì một điểm thuộc đường tròn (C) còn 1 điểm thì không)
Để đỡ nhầm lẫn, chúng ta thay tên \(A\left(1;2\right)\) bằng \(M\left(1;2\right)\)
Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\)
Do \(AB=4=2R\) nên AB là đường kính
\(\Rightarrow\Delta\) đi qua tâm I
\(\overrightarrow{IM}=\left(1;-3\right)\Rightarrow\) đường thẳng \(\Delta\) nhận (3;1) là 1 vtpt
Phương trình \(\Delta\):
\(3\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow3x+y-5=0\)
1.
Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)
Do đường tròn tiếp xúc với \(d_1;d_2\) nên:
\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)
Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.
2.
Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?
Cụ thể đi bạn.