K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

bạn cần nói rõ đề hơn nhé

30 tháng 10 2019

3 dấu giá trị tuyệt đối là sao

22 tháng 4 2019

Sửa đề: \(\frac{x-3}{2018}\rightarrow\frac{x-3}{2016}\)

\(\frac{x-1}{2018}+\frac{x-2}{2017}=\frac{x-3}{2016}+\frac{x-4}{2015}\)

\(\Leftrightarrow\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)

\(\Leftrightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}=\frac{x-2019}{2016}+\frac{x-2019}{2015}\)

\(\Leftrightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}-\frac{x-2019}{2016}-\frac{x-2019}{2015}=0\)

\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

\(\Leftrightarrow x-2019=0\) (Vì \(\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)\ne0\) )

\(\Leftrightarrow x=2019\)

Vậy \(S=\left\{2019\right\}\)

18 tháng 8 2019

Này Thục Trinh, chỗ mà \(\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)

bạn phải có đóng mở ngoặc vào chứ

a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)

\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Vậy : \(x=-2020\)

Chúc bạn học tốt !!

13 tháng 8 2019

a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)

Vậy x = -2020

b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)

Vậy x = -2010

27 tháng 12 2017

A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)

>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)

\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\)                                  (1)

Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)

\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)

\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\)                 (2)

Từ (1) và (2) suy ra:1 < A < 2

Vậy A không phải là số nguyên

18 tháng 6 2018

vui nhi

16 tháng 9 2018

\(\frac{x-2017}{5}-\frac{x-2017}{6}=\frac{x-2017}{7}-\frac{x-2017}{8}\)

\(\frac{x-2017}{5}-\frac{x-2017}{6}-\frac{x-2017}{7}+\frac{x-2017}{8}=0\)

\(\left(x-2017\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\frac{1}{8}\right)=0\)

mà \(\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\frac{1}{8}\ne0\)

\(\Rightarrow x-2017=0\)

\(\Rightarrow x=2017\)

Vậy x = 2017

16 tháng 9 2018

\(\Rightarrow\frac{x-2017}{5}-\frac{x-2017}{6}-\frac{x-2017}{7}+\frac{x-2017}{8}=0\)

\(\Rightarrow\left(x-2017\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\frac{1}{8}\right)=0\)

\(\Rightarrow x-2017=0\)(vì \(\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\frac{1}{8}\ne0\))

=>x=2017

Chúc bạn học tốt

8 tháng 7 2017

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)

\(\Leftrightarrow x=-2020\)

1 tháng 8 2017

khó lắm

bây h thì bạn giải đc chưa

3 tháng 9 2020

ĐK \(2018x\ge0\Rightarrow x\ge0\)

Khi đó \(x+\frac{1}{2018}\ge0;x+\frac{2}{2018}\ge0;...;x+\frac{2017}{2018}\ge0\)

Ta có \(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|=2018x\)(Vế trái có 2017 hạng tử)

<=> \(x+\frac{1}{2018}+x+\frac{2}{2018}+...+x+\frac{2017}{2018}=2018x\)

<=> \(\left(x+x+...x\right)+\left(\frac{1}{2018}+\frac{2}{2018}+...+\frac{2017}{2018}\right)=2018x\)

           2017 hạng tử x                   2017 số hạng

=> \(2017x+\frac{1+2+...+2017}{2018}=2018x\)

=> \(x=\frac{2017.\left(2017+1\right):2}{2018}\)

\(\Rightarrow x=\frac{2017}{2}=1008,5\)(tm)

Vậy x = 1008,5

3 tháng 9 2020

Vì \(\left|x+\frac{1}{2018}\right|\ge0\forall x\)

    \(\left|x+\frac{2}{2018}\right|\ge0\forall x\)

    \(\left|x+\frac{3}{2018}\right|\ge0\forall x\)

     .......................................

    \(\left|x+\frac{2017}{2018}\right|\ge0\forall x\)

\(\Rightarrow\)\(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+\left|x+\frac{3}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|\ge0\forall x\)

mà \(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+\left|x+\frac{3}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|=2018x\)

 \(\Rightarrow\)\(2018x\ge0\forall x\)\(\Rightarrow\)\(x\ge0\)

 \(\Rightarrow\)\(x+\frac{1}{2018}+x+\frac{2}{2018}+x+\frac{3}{2018}+...+x+\frac{2017}{2018}=2018x\)

\(\Leftrightarrow\)\(2017x+\frac{1}{2018}+\frac{2}{2018}+\frac{3}{2018}+...+\frac{2017}{2018}=2018x\)

\(\Leftrightarrow\)\(\frac{1+2+3+...+2017}{2018}=x\)

\(\Leftrightarrow\)\(x=\frac{\left[\left(2017+1\right).2017\right]:2}{2018}\)

\(\Leftrightarrow\)\(x=\frac{2035153}{2018}\)

\(\Leftrightarrow\)\(x=\frac{2017}{2}=1008,5\)

Vậy \(x=1008,5\)