K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2016

chuyển hết về pt chuẩn tắc

=> kl..

24 tháng 1 2016

a) n1(-2;1) = n2( 6; -3) = ( -2;1) => //

b) n1( 1;2) ; n2( 2;3) => cắt nhau

c) trùng nhau

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 1} \right),\overrightarrow {{n_2}}  = \left( {1;1} \right)\)

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + ( - 1).1 = 0\) nên \(\overrightarrow {{n_1}}  \bot \overrightarrow {{n_2}} \)

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - 3; - 1} \right)\)

 b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {5; - 2} \right),\overrightarrow {{n_2}}  = \left( {5; - 2} \right)\)

\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;3)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(5.1 - 2.3 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song

c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3;1} \right),\overrightarrow {{n_2}}  = \left( {3;1} \right)\)

Suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(2;5)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(3.2 + 5 - 11 = 0\), suy ra A thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) trùng nhau

6 tháng 4 2019

Đáp án A

Đường thẳng d đi qua điểm A( 1 ; 1 ;1); có một vecto chỉ phương là ( 2; -1; -1)

Mặt phẳng (P) có vecto pháp tuyến là

Ta có: u → . n →  = 2.1 + (-1).1 + (-1).1 = 0 và A  (P)

Suy ra, đường thẳng d thuộc mặt phẳng (P).

30 tháng 3 2017

a) Xét hệ \(\left\{{}\begin{matrix}4x-10y+1=0\\x+y+2=0\end{matrix}\right.\)

D = 4.1 = 10.1 = -6 ≠ 0

Vậy d1 và d2 cắt nhau

b) Tương tự, ta có: d1 :\(12x-6y+10=0\) ;

d2= \(2x-y-7=0\)

D = 12 . (-1) - (-6).2 = -12 + 12 = 0

Dx = (-6) . (-7) - (-1). 10 = 42 + 10 = 52 ≠ 0

Vậy d1 // d2

c) Tương tự, ta có d1: \(8x+10y-12=0\)

d2:\(4x+5y-6=0\)

D = 8 . 5 - 4 . 10 = 0

Dx = 10. (-6) - (-12) . 5 = 0

Dy = (-12) . 4 - (-6) . 8 = 0

Vậy d1 trùng d2.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + ( - 1).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2}} }} = 0 \Rightarrow {d_1} \bot {d_2}\)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau tại điểm có tọa độ \(( - 3; - 1)\)

b) Đường thẳng \({d_1}\) có phương trình tổng quát là: \({d_1}:2x - y + 1 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 3y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{3}{5}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.\left( { - 1} \right) + 1.( - 3)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại điểm có tọa độ \(\left( { - \frac{1}{5};\frac{3}{5}} \right)\) và góc giữa chúng là \(45^\circ \)

c) Đường thẳng \({d_1}\) và \({d_2}\) lần lượt có phương trình tổng quát là:

\({d_1}:3x + y - 11 = 0,{d_2}:x - 3y + 8 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}3x + y - 11 = 0\\x - 3y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = \frac{7}{2}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {3.1 + 1.( - 3)} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = 0 \Rightarrow \left( {{d_1},{d_2}} \right) = 90^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc tại điểm có tọa độ \(\left( {\frac{5}{2};\frac{7}{2}} \right)\)

15 tháng 4 2020

a) 2x-3y+5=0

Giả sử x=0⇒y=\(\frac{5}{3}\)

⇒d đi qua A(2:0)

⇒vtpt n1=(2;-3)

thay tt tìm đc vtpt n2=(3;7)

ADCT tính góc cos tìm đc gócφ =56'53

b)giải tt như câu a