Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇒ MN // BC (định lí Ta lét đảo)
Suy ra: Δ AMN = ∆ A’B’C’(c.c.c) nên hai tam giác này cũng đồng dạng với nhau (1).
Xét tam giác ABC có MN// BC nên Δ AMN đồng dạng với tam giác ABC (2)
Từ (1) và (2) suy ra: Δ A’B’C’ đồng dạng với tam giác ABC (tính chất).
- Em cắt bốn tứ giác như nhau bằng giấy rồi thực hiện các bước theo yêu cầu bài toán.
Ta có thể ghép bốn tứ giác khít nhau như Hình 3.1b.
- Nhận xét: Bốn góc tại điểm chung của bốn tứ giác được ghép khít nhau.
Khi đó: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
a)
Nên theo định lí ta- let đảo ta có: DE // BC.
Nên theo định lí ta- let đảo ta có: EF // AB.
b) Tứ giác BDEF là hình bình hành vì có các cặp cạnh đối song song với nhau
c) Tứ giác BDEF là hình bình hành ⇒ DE = BF = 7
Ba cạnh của ΔADE tương ứng tỉ lệ với ba cạnh của ΔABC
Vì AD là đường phân giác của tam giác ABC nên: A B A C = B D D C
Theo bài, ta có: AC = 2AB ⇒ A B A C = 1 2 ⇒ B D D C = 1 2 hay (I) đúng
Lại có: B D D C = 1 2 ⇒ B D B C = B D D C + B D = 1 2 + 1 = 1 3 nên (III) sai.
⇒ D C B C = B C − B D B C = 1 − B D B C = 1 − 1 3 = 2 3
hay (II) đúng
Vậy chỉ có 2 khẳng định đúng.
Đáp án: D
BẠN HỎI LÀM J
*THẮC CMN MẮC*
Là comment nha bn!
Tk mk nha!