\(\dfrac{1}{2n^2-3}\)

b) u<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

a: \(2n^2-3>=-3\)

\(\Leftrightarrow u_n=\dfrac{1}{2n^2-3}< =-\dfrac{1}{3}\)

=>Dãy số bị chặn trên ở -1/3

b: \(2n^2-1>=-1\)

=>\(u_n=\dfrac{1}{2n^2-1}< =\dfrac{1}{-1}=-1\)

=>Dãy số bị chặn trên ở -1

NV
13 tháng 12 2018

a/

\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(u_n=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(u_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

\(u_n=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)

b/ \(u_n=\dfrac{1}{1^2+3}+\dfrac{1}{2^2+6}+...+\dfrac{1}{n^2+3n}=\dfrac{1}{1.4}+\dfrac{1}{2.5}+...+\dfrac{1}{n\left(n+3\right)}\)

\(u_n=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\right)\)

\(u_n=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\right)\)

\(\Rightarrow lim\left(u_n\right)=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=\dfrac{11}{18}\)

9 tháng 4 2017
a) Dãy số bị chặn dưới vì un = 2n2 -1 ≥ 1 với mọi n ε N* và không bị chặn trên vì với số M dương lớn bất kì, ta có 2n2 -1 > M <=> n > .
tức là luôn tồn tại n ≥ + 1 để 2 - 1 > M.
b) Dễ thấy un > 0 với mọi n ε N*
Mặt khác, vì n ≥ 1 nên n2 ≥ 1 và 2n ≥ 2.
Do đó n(n + 2) = n2 + 2n ≥ 3, suy ra .
Vậy dãy số bị chặn 0 < un với mọi n ε N*
c) Vì n ≥ 1 nên 2n2 - 1 > 0, suy ra > 0
Mặt khác n2 ≥ 1 nên 2n2 ≥ 2 hay 2n2 - 1≥ 1, suy ra ≤ 1.
Vậy 0 < un ≤ 1, với mọi n ε N* , tức dãy số bị chặn.
d) Ta có: sinn + cosn = √2sin(n + ), với mọi n. Do đó:
-√2 ≤ sinn + cosn ≤ √2 với mọi n ε N*
Vậy -√2 < un < √2, với mọi n ε N* .



19 tháng 5 2017

a) Bị chặn trên vì \(u_n\le1,\forall n\in\mathbb{N}^{\circledast}\)

b) Bị chặn dưới vì \(u_n\ge2,\forall n\in\mathbb{N}^{\circledast}\)

c) Bị chặn dưới vì \(u_n\ge\sqrt{3},\forall n\in\mathbb{N}^{\circledast}\)

d) Bị chặn vì \(0< u_n\le\dfrac{1}{2},\forall n\in\mathbb{N}^{\circledast}\)

22 tháng 3 2020

+) \(U_n=\sqrt{n^2+2}-n=\frac{2}{\sqrt{n^2+2}+n}\)

\(U_{n+1}=\sqrt{\left(n+1\right)^2+2}-\left(n+1\right)=\frac{2}{\sqrt{\left(n+1\right)^2+2}+n+1}\)

Vì \(\frac{2}{\sqrt{n^2+2}+n}>\frac{2}{\sqrt{\left(n+1\right)^2+2}+n+1}\)với mọi số tự nhiên n 

=> \(U_n>U_{n+1}\)với mọi số tự nhiên n

=> \(U_n\) là dãy giảm.

+) Ta có: \(\sqrt{n^2+2}-n\le\sqrt{\left(n+\sqrt{2}\right)^2}-n=\sqrt{2}\)với mọi số tự nhiên n 

=> \(U_n\) là dãy bị chặn

NV
22 tháng 1 2019

Ý bạn là dãy số này: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=u_n+\left(\dfrac{1}{2}\right)^n\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\u_{n+1}+2.\left(\dfrac{1}{2}\right)^{n+1}=u_n+2.\left(\dfrac{1}{2}\right)^n\end{matrix}\right.\)

Đặt \(v_n=u_n+2.\left(\dfrac{1}{2}\right)^n\Rightarrow\left\{{}\begin{matrix}v_1=u_1+2\left(\dfrac{1}{2}\right)=2\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)

\(\Rightarrow v_n=v_1=1\Rightarrow u_n+2\left(\dfrac{1}{2}\right)^n=1\)

\(\Rightarrow u_n=1-2\left(\dfrac{1}{2}\right)^n\)

\(\Rightarrow lim\left(u_n\right)=lim\left[1-2\left(\dfrac{1}{2}\right)^n\right]=1-0=1\)

26 tháng 2 2019

thanks bn nha

26 tháng 12 2019
https://i.imgur.com/BzNqi00.jpg
26 tháng 12 2019
https://i.imgur.com/PHFvoJD.jpg