K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2021

A B C M N I

Gọi I là giao điểm MB, CN thì I là trọng tâm tam giác 

\(sin\widehat{ACN}=\dfrac{AB}{2CN}=\dfrac{AB}{\sqrt{4AC^2+AB^2}}\) ; \(BM=\sqrt{\dfrac{AC^2}{4}+AB^2}\Rightarrow IM=\dfrac{1}{3}\sqrt{\dfrac{AC^2}{4}+AB^2}\)

Ta có: \(\dfrac{sin\widehat{CIM}}{CM}=\dfrac{sin\widehat{ACN}}{IM}\Leftrightarrow sin\alpha=\dfrac{CM}{IM}sin\widehat{ACN}=\dfrac{AC}{\dfrac{2}{3}\sqrt{\dfrac{AC^2}{4}+AB^2}}.\dfrac{AB}{\sqrt{4AC^2+AB^2}}\)

\(\Leftrightarrow sin\alpha=\dfrac{3AB.AC}{\sqrt{\left(4AB^2+AC^2\right)\left(4AC^2+AB^2\right)}}\le\dfrac{3AB.AC}{5AB.AC}=\dfrac{3}{5}\)

13 tháng 12 2023

Dấu tương đương cuối thì phải là 3AB.AC\2căn… chứ ạloading...  

NV
18 tháng 3 2021

Gọi G là giao điểm BM và CN. Đặt AB=c, AC=b

Ta có: \(BM^2=\dfrac{2\left(a^2+c^2\right)-b^2}{4}\) ; \(\Rightarrow BG^2=\left(\dfrac{2}{3}BM\right)^2=\dfrac{2\left(a^2+c^2\right)-b^2}{9}\)

\(CN^2=\dfrac{2\left(a^2+b^2\right)-c^2}{4}\Rightarrow CG^2=\dfrac{2\left(a^2+b^2\right)-c^2}{9}\)

Mặt khác \(BG^2+CG^2=BC^2\)

\(\Rightarrow\dfrac{2\left(a^2+c^2\right)-b^2}{9}+\dfrac{2\left(a^2+b^2\right)-c^2}{9}=a^2\)

\(\Rightarrow b^2+c^2=5a^2\)

Áp dụng định lý hàm cos:

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{5a^2-a^2}{2bc}=\dfrac{2a^2}{bc}\Rightarrow bc=\dfrac{2a^2}{cos\alpha}\)

\(S_{ABC}=\dfrac{1}{2}bcsinA=\dfrac{1}{2}.\dfrac{2a^2}{cos\alpha}.sin\alpha=a^2.tan\alpha\)

7 tháng 9 2017

Chọn D.

Gọi M là trung điểm của AC suy ra

 .

Do tam giác BAM vuông tại A