K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

1 tháng 3 2019

Đáp án D

28 tháng 5 2018

Đáp án A

17 tháng 5 2017

Hàm số \(y=-f\left(x\right)\) đồng biến trên khoảng \(\left(a;b\right)\)

5 tháng 6 2017

Nếu \(a>0\) thì hàm số \(y=ax^2+bx+c\)
Nghịch biến trên khoảng: \(\left(-\infty;-\dfrac{b}{2a}\right)\);
Đồng biến trên khoảng: \(\left(\dfrac{-b}{2a};+\infty\right)\).
Nếu \(a< 0\) thì hàm số \(y=ax^2+bx+c\):
Nghịch biến trên khoảng: \(\left(\dfrac{-b}{2a};+\infty\right)\);
Đồng biến trên khoảng: \(\left(-\infty;-\dfrac{b}{2a}\right)\).

3 tháng 11 2021

A. Đây là hàm số bậc nhất. a= -3 < 0 nên => Ngịch biến

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

16 tháng 12 2023

thầy ơi thầy có thể giải giùm e đc ko ạ

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)

Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)

Chọn C.