Xét hai đại lượng \(x;y\) phụ thuộc vào nhau theo các hệ thức dưới đây. Những...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(x + y = 1 \Rightarrow y = 1 - x\), vậy với mỗi giá trị x chỉ có 1 giá trị y giá trị y, vậy x=y+1 là hàm số

b) \(y = {x^2}\)là 1 hàm số

c) \({y^2} = x \Rightarrow \)\(y = \sqrt x \)hoặc \(y =  - \sqrt x \)(nếu \(x \ge 0\)), vậy 1 giá trị của x lại có 2 giá trị y, nên đây không phải là hàm số

d) \({x^2} - {y^2} = 0 \Leftrightarrow {x^2} = {y^2}\), y=x hoặc y=-x, vậy 1 giá trị của x lại có 2 giá trị y, nên đây không phải là hàm số

1 tháng 5 2016

bài toán trên online math, bạn tự tìm hiểu

2 tháng 4 2017

a) Tập xác định của y = f(x) = |x| là D = R.

∀x ∈ R => -x ∈ R

f(- x) = |- x| = |x| = f(x)

Vậy hàm số y = |x| là hàm số chẵn.

b) Tập xác định của

y = f(x) = (x + 2)2 là R.

x ∈ R => -x ∈ R

f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)

f(- x) ≠ - f(x) = - x2 – 4x - 4

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

c) D = R, x ∈ D => -x ∈ D

f(– x) = (– x3) + (– x) = - (x3 + x) = – f(x)

Vậy hàm số đã cho là hàm số lẻ.

d) Hàm số không chẵn cũng không lẻ.


12 tháng 4 2017

lời giải

a) Hàm chẵn

b) f(x) =f(-x)=>hàm chẵn

c) không chẵn, không lẻ

d)f(-x) =\(\dfrac{-x^4+x^2+1}{-x}=-\dfrac{-x^4+x^2+1}{x}=-f\left(x\right)\) =>hàm lẻ

24 tháng 4 2017

a) y vừa là hàm số chẵn, vừa là hàm số lẻ.
b) TXĐ: R tự đối xứng.
\(y\left(-x\right)=3\left(-x\right)^2-1=3x^2-1=y\left(x\right)\).
Vậy y là hàm số chẵn.
c) TXĐ: R tự đối xứng.
\(y\left(-x\right)=-\left(-x\right)^4+3\left(-x\right)-2=-x^4-3x-2\)
\(-y\left(x\right)=x^4-3x+2\).
Dẽ thấy \(y\left(-x\right)\ne y\left(x\right)\)\(y\left(-x\right)\ne-y\left(x\right)\) nên y không là hàm chẵn và hàm số lẻ.
D) TXĐ: R\ {0} tự đối xứng.
\(y\left(-x\right)=\dfrac{-\left(-x\right)^4+\left(-x\right)^2+1}{-x}=-\dfrac{-x^4+x^2+1}{x}=-y\left(x\right)\)
Vậy y là hàm số lẻ.

27 tháng 6 2016

B= \(\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)

ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

=>\(\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\frac{9}{16}\)

=> min B=9/16 kh x=-1/2

C= \(x^2-2xy+y^2+1\)\(\left(x-y\right)^2+1\)

ta có \(\left(x-y\right)^2\ge0\)=>\(\left(x-y\right)^2+1\ge1\)

=> Min C=1 khi x=y

 

27 tháng 6 2016

cảm ơn bạn nhìu nhak