K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

UK F(X) BAN G F(X)

b: \(\Delta=2^2-4\cdot1\cdot1=0\)

Do đó: Tam thức này dương khi x khác -1; bằng 0 khi x=-1

a: \(\Delta=3^2-4\cdot\left(-5\right)\cdot\left(-1\right)=9-20=-11< 0\)

Do đó: Tam thức này luôn âm với mọi x

c: \(\Delta=1^2-4\cdot1\cdot\left(-2\right)=9\)

Do đó: Tam thức này âm khi -2<x<1

Bằng 0 khi x=-2 hoặc x=1

Dương khi x<-2 hoặc x>1

23 tháng 9 2023

Tham khảo:

Tam thức bậc hai \(f\left( x \right) =  - {x^2} - 2x + 8\) có hai nghiệm phân biệt \({x_1} =  - 4,{x_2} = 2\) và hệ số \(a =  - 1 < 0\).

Ta có bảng xét dấu \(f\left( x \right)\) như sau:

Bài 1: Xét dấu các biểu thức sau:a) f(x)= 2x2+5x+2         b) f(x)= 4x2-3x-1      c) f(x)= -3x2+5x+1        d) f(x)= 3x2+5x+1             e) f(x)= 3x2-2x+1              f) f(x)= -4x2+12x-9g) f(x)= x2-4x-5             h) f(x)= \(\frac{1}{2}x^2+3x+6\)i) f(x)= -2x2-5x+7           j) f(x)= x2-1Bài 2: Viết PTTQ của các đường thẳng đi qua điểm M và có hệ số góc k:a) M ( -3;1) , k= -2     b) M ( -3;4) , k= 3Bài 3: Viết...
Đọc tiếp

Bài 1: Xét dấu các biểu thức sau:

a) f(x)= 2x2+5x+2         b) f(x)= 4x2-3x-1      c) f(x)= -3x2+5x+1        d) f(x)= 3x2+5x+1             e) f(x)= 3x2-2x+1              f) f(x)= -4x2+12x-9

g) f(x)= x2-4x-5             h) f(x)= \(\frac{1}{2}x^2+3x+6\)

i) f(x)= -2x2-5x+7           j) f(x)= x2-1

Bài 2: Viết PTTQ của các đường thẳng đi qua điểm M và có hệ số góc k:
a) M ( -3;1) , k= -2     b) M ( -3;4) , k= 3
Bài 3: Viết PTTS của các đường thẳng đi qua điểm M và vuông góc với
đường thẳng d:

a) M (2;-3) , d: \(\hept{\begin{cases}x=1-2t\\y=3+4t\end{cases}}\)

b) M (0;-2) , d: 3x+2y+1

Bài 4: Cho tam giác ABC có A(2; 0), B( 2; -3), C( 0; -1)
a) Viết PTTQ các cạnh của tam giác ABC.
b) Viết PTTQ của đường thẳng đi qua điểm A và song song với đường
thẳng BC.
c) Viết PTTS của đường thẳng đi qua điểm B và vuông góc với đường
thẳng AC.
d) Viết PTTS của đường trung tuyến AM.
e) Viết PTTQ của đường cao AH.

giai giup cần gâp

 

                                      

2
4 tháng 5 2020

hello bạn hiến

đừng đăng linh tinh nha bạn

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(f\left( x \right) = 2{x^2} - 3x - 2\) có \(\Delta  = 25 > 0\), hai nghiệm phân biệt là \({x_1} =  - \frac{1}{2};{x_2} = 2\)

và \(a = 2 > 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) âm trong khoảng \(\left( { - \frac{1}{2},2} \right)\) và dương trong hai khoảng

 \(\left( { - \infty , - \frac{1}{2}} \right)\) và \(\left( {2, + \infty } \right)\)

b) \(g\left( x \right) =  - {x^2} + 2x - 3\) có \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 3} \right) =  - 8 < 0\) và \(a =  - 1 < 0\)

Vậy \(g\left( x \right)\)âm với mọi \(x \in \mathbb{R}\)

18 tháng 1 2016

vào chttt

8 tháng 9 2017

A nhà bnhihi

a: \(-x^2+x+6=-\left(x-3\right)\left(x+2\right)\)

b: Đa thức này ko phân tích được nhé bạn

7 tháng 4 2017

a) F(x) = \(-x^2\left(x-1\right)\left(x+2\right)\left(x+2\right)=\left(1-x\right)x^2\left(x+2\right)^2\\ \)

\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) => dấu biểu thức chỉ phụ thuộc vào thừa số (1-x)

F(x) =0 khi x={-2,0,1}

F(x) > 0 khi x<1 và khác -2 và 0

f(x) <0 khi x> 1

7 tháng 4 2017

Tử f(x) =x^2(x^2-3x+2) =x^2(x-1)(x-2)

tương tự a) dấu của tử phụ thuộc (x-1)(x-2)

Mẫu f(x) =x^2 -x-30 =(x-5)(x+6)

Phần hỗ trợ Lập bảng đây khó thao tác

=> viết bằng hệ {điểm tới hạn xet x={-6,0,1,2,5}

Khi => \(\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)=>f(x) =0

Khi \(\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\) => f(x) không xác định

Khi \(x< -6\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(x\right)>0\)

khi -6<x<1 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi 1<x<2 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)< 0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) >0

khi 2<x<5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi x>5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\) => f(x) >0