K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

hình vuông có chu vi lớn hơn hình tam giác

21 tháng 6 2017

vì sao

23 tháng 2 2017

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2)

Hình chữ nhật có kích thước là 1cm x 12cm có diện tích là 12cm2 và chu vi là (1 + 12).2 = 26 (cm) (có 26 > 15)

Hình chữ nhật kích thước 2cm x 7cm có diện tích là 14cm2 và chu vi là (2 + 7).2 = 18 (cm)

(có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

b) + Chu vi hình chữ nhật ABCD đã cho là (5 + 3).2 = 16 cm

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là: 16 : 4 = 4 cm

Diện tích hình vuông này là 4.4 = 16 cm2

(Ở trên hình là ví dụ hình vuông MNPQ có cạnh là 4cm)

Vậy SHCN < SHV

+ Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

Gọi cạnh của hình chữ nhật có độ dài lần lượt là a, b.

Hình vuông có cùng chu vi với hình chữ nhật nên cạnh hình vuông là Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ Hình vuông có diện tích lớn nhất.

8 tháng 12 2017

Diện tích hình vuông lớn hơn nha bạn ơi

8 tháng 12 2017

hình vuông

20 tháng 2 2017

Giải bài 36 trang 129 Toán 8 Tập 1 | Giải bài tập Toán 8

Giả sử hình thoi ABCD và hình vuông MNPQ có cùng chu vi là 4a

Suy ra cạnh hình thoi và cạnh hình vuông đều có độ dài a

Ta có: SMNPQ = a2

Từ đỉnh góc từ A của hình thoi ABCD, vẽ đường cao AH có độ dài là h.

ABCD là hình thoi

⇒ ABCD là hình bình hành

⇒ SABCD = ah

Mà ta luôn có h ≤ a (đường vuông góc nhỏ hơn đường xiên)

⇒ ah ≤ a2 ⇒ SABCD ≤ SMNPQ

Vậy diện tích hình vuông luôn lớn hơn diện tích hình thoi.

8 tháng 12 2017

hình chữ nhật

8 tháng 12 2017

đặt 2 cạnh hình chữ nhật là (a+k) và (a-k) ta có (a+k).(a-k)= a^2-k^2
để max thì k^2 min => k^2=0 => là hình vuông

21 tháng 4 2017

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI

Hướng dẫn giải:

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI



12 tháng 1 2019

hai hình bằng nhau

12 tháng 1 2019

cách này bản quyền của t nhé :) Cauchy-Schwwarz dạng Engel + Cosi 

A B C D E F G H O

Ta có : 

\(S_{EFGH}=\frac{1}{2}EG^2=\frac{1}{2}\left(EF^2+FG^2\right)=\frac{1}{2}\left(AB^2+BC^2\right)=\frac{1}{2}\left(OA^2+OB^2+OC^2+OD^2\right)\)

\(\ge\frac{1}{2}.\frac{\left(OA+OB+OC+OD\right)^2}{1+1+1+1}=\frac{\left(AC+BD\right)^2}{8}=\frac{AC^2+BD^2+2AC.BD}{8}\)

\(\ge\frac{2\sqrt{\left(AC.BD\right)^2}+2AC.BD}{8}=\frac{2AC.BD+2AC.BD}{8}=\frac{4AC.BD}{8}=\frac{1}{2}AC.BD=S_{ABCD}\)

\(\Rightarrow\)\(S_{EFGH}\ge S_{ABCD}\)

Mà dấu "=" không xảy ra ở cả 2 bđt nên \(S_{EFGH}>S_{ABCD}\)

Vậy hình vuông có diện tích lớn hơn 

21 tháng 4 2017

Giả sử hình thoi ABCD và hình vuông MNPQ có cùng chu vi là 4a.

Suy ra cạnh hình thoi và cạnh hình vuông đều có độ dài là a

Ta có: SMNPQ = a2

Từ đỉnh góc tù A của hình thoi ABCD vẽ đường cao AH có độ dài h.

Khi đó SABCD = ah

Nhưng h ≤ a (đường vuông góc nhỏ hơn đường xiên) nên ah ≤ a2

Vậy SABCD ≤ SMNPQ

Dấu "=" xảy ra khi h = a hay H trùng với D, nghĩa là hình thoi ABCD trở thành hình vuông.


21 tháng 4 2017

Với một hình thoi và một hình vuông có cùng chu vi thì hình vuông có diện tích lớn hơn. Vì hai hình này có chu vi bằng nhau nên mỗi cạnh của nó bằng nhau. Giả sử là cạnh có độ dài bằng a.

Diện tích hình vuông là a2

Trong khi hình thoi, ta gọi d1,d2 là độ dài các đường chéo ta có

Diện tích hình thoi là 1/2d1.d2.dap-an-bai-36




18 tháng 2 2017

Giả sử hình thoi ABCD và hình vuông MNPQ có cùng chu vi là 4a. 

Suy ra cạnh hình thoi và cạnh hình vuông đều có độ dài là a

Ta có:  SMNPQ = a2

Từ đỉnh góc tù A của hình thoi ABCD vẽ đường cao AH có độ dài h.

Khi đó SABCD =  ah

Nhưng h ≤ a (đường vuông góc nhỏ hơn đường xiên) nên ah ≤ a2

Vậy SABCD  ≤  SMNPQ

Dấu "=" xảy ra khi h = a hay H trùng với D, nghĩa là hình thoi ABCD trở thành hình vuông.

18 tháng 2 2017

Giả sử hình thoi ABCD và hình vuông MNPQ có cùng chu vi là 4a. 

Suy ra cạnh hình thoi và cạnh hình vuông đều có độ dài là a

Ta có:  SMNPQ = a2

Từ đỉnh góc tù A của hình thoi ABCD vẽ đường cao AH có độ dài h.

Khi đó SABCD =  ah

Nhưng h ≤ a (đường vuông góc nhỏ hơn đường xiên) nên ah ≤ a2

Vậy SABCD  ≤  SMNPQ

Dấu "=" xảy ra khi h = a hay H trùng với D, nghĩa là hình thoi ABCD trở thành hình vuông.

23 tháng 2 2017

Gọi a1,a2 lan luot la canh hing vuong 1 va canh hinh vuong 2

P1,P2  ___________ chu vi________________

S1,S2 __________diện tích____________

Theo đề ta có

 \(P_1-P_2=12\Leftrightarrow4a_1-4a_2=12\Leftrightarrow a_1-a_2=3\)3

S1-S2=135

\(a_1^2-a_2^2=135\)

\(\Leftrightarrow\left(a_1-a_2\right)\left(a_1+a_2\right)=135\)

\(\Leftrightarrow3\left(a_1+a_2\right)=135\Leftrightarrow a_1+a_2=45\)\(\Leftrightarrow a_1=45-a_2\)

\(a_1-a_2=3\Leftrightarrow45-a_2-a_2=3\Leftrightarrow a_2=\frac{45-3}{2}=21\)

\(\Rightarrow a_1=3+a_2=3+21=24\)

vay canh hv 1 la 24m, cạnh hv 2 la 21 m