K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(y'=\frac{\left(e^x+e^{-x}\right)^2-\left(e^x-e^{-x}\right)^2}{\left(e^x+e^{-x}\right)^2}=\frac{4}{\left(e^x+e^{-x}\right)^2}\)

12 tháng 5 2016

\(y'=\frac{e^x}{2\sqrt{e^x}}+3.e^{3x-1}-\left(-\sin x+\cos x\right)5^{\sin x+\cos x}\ln5\)

    \(=\frac{\sqrt{e^x}}{2}+3e^{3x-1}+\left(\sin x+\cos x\right).5^{\sin x+\cos x}\ln5\)

NV
4 tháng 10 2020

c.

\(y=2sin2x-1\)

Do \(-1\le sin2x\le1\Rightarrow-3\le y\le1\)

\(y_{min}=-3\) khi \(sin2x=-1\)

\(y_{max}=1\) khi \(sin2x=1\)

d.

\(-1\le sin3x\le1\Rightarrow-1\le y\le3\)

e.

\(0\le sin^22x\le1\Rightarrow1\le y\le4\)

4 tháng 10 2020

Em c.ơn ạ

5 tháng 5 2016

ta có y'=\(-e^{-x}.\sin+e^{-x}.cosx\)

y"=\(e^{-x}.sinx-e^{-x}.cosx-e^{-x}.cosx-e^{-x}.sinx=-2e^{-x.cosx}\)

vậy y"+2y'+2y=\(-2e^{-x}.cosx-2e^{-x}.sinx+2e^{-x}.cosx+2e^{-x}.sinx=0\)

NV
11 tháng 5 2020

a/ \(y'=42\left(2x+3\right)^{20}\left(x-4\right)^{23}+23\left(x-4\right)^{22}\left(2x+3\right)^{21}\)

b/ \(y=\frac{1}{x\sqrt{x}}=\frac{1}{\sqrt{x^3}}=x^{-\frac{3}{2}}\Rightarrow y'=-\frac{3}{2}x^{-\frac{5}{2}}=-\frac{3}{2x^2\sqrt{x}}\)

c/ \(y'=\frac{\left(x+\frac{1}{x}\right)'}{2\sqrt{\frac{x^2+1}{x}}}=\frac{1-\frac{1}{x^2}}{2\sqrt{\frac{x^2+1}{x}}}=\frac{\left(x^2-1\right)\sqrt{x}}{2x^2\sqrt{x^2+1}}\)

d/ \(y=x^2+x^{\frac{3}{2}}+1\Rightarrow y'=2x+\frac{3}{2}x^{\frac{1}{2}}=2x+\frac{3}{2}\sqrt{x}\)

e/ \(y'=\frac{\sqrt{1-x}+\frac{1+x}{2\sqrt{1-x}}}{1-x}=\frac{3-x}{2\left(1-x\right)\sqrt{1-x}}\)

f/ \(y'=\frac{\sqrt{a^2-x^2}+\frac{x^2}{\sqrt{a^2-x^2}}}{a^2-x^2}=\frac{a^2}{a^2-x^2}\)

NV
15 tháng 7 2020

4.

\(-1\le sinx\le1\Rightarrow\sqrt{2}\le\sqrt{sinx+3}\le2\)

\(\Rightarrow\sqrt{2}-1\le y\le1\)

12.

ĐKXĐ: \(sinx+1\ne0\Rightarrow sinx\ne-1\Rightarrow x\ne-\frac{\pi}{2}+k2\pi\)

20.

\(y=tanx\) ko xác định khi \(cosx=0\Leftrightarrow x=\frac{\pi}{2}+k\pi\)

22.

\(y_{min}=y\left(\frac{\pi}{4}\right)=cos\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)