\(\frac{x^2+5}{x^2-3x-2}=\frac{a}{x-2}+\frac{b}{x^2+2x+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Biến đổi vế phải ta được :

\(VP=\frac{9x^2-16x+4}{x^3-3x^2+2x}=\frac{9x^2-16x+4}{x\left(x^2-3x+2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)(1)

Biến đổi vế trái ta được :

\(VT=\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{a\left(x-1\right)\left(x-2\right)+bx\left(x-2\right)+c\left(x-1\right)x}{x\left(x-1\right)\left(x-2\right)}\)

\(=\frac{ax^2-3ax+2a+bx^2-2bx+cx^2-cx}{x\left(x-1\right)\left(x-2\right)}=\frac{\left(a+b+c\right)x^2+\left(-3a-2b-c\right)x+2a}{x\left(x-1\right)\left(x-2\right)}\)(2)

Từ (1);(2) \(\Rightarrow\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}=\frac{\left(a+b+c\right)x^2+\left(-3a-2b-c\right)x+2a}{x\left(x-1\right)\left(x-2\right)}\)

Động nhất hệ số ta được : \(\hept{\begin{cases}a+b+c=9\\-3a-2b-c=-16\\2a=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b+c=9\\3a+2b+c=16\\a=2\end{cases}\Leftrightarrow\hept{\begin{cases}b+c=7\\2b+c=10\end{cases}\Leftrightarrow}\hept{\begin{cases}b=3\\c=4\end{cases}}}\)

Vậy \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)

10 tháng 12 2016

b/ 

\(\frac{1}{x^3-1}=\frac{a}{x-1}+\frac{6x+c}{x^2+x+1}=\frac{\left(a+6\right)x^2+\left(c+a-6\right)x-c+a}{x^3-1}\)

Đồng nhất thức 2 vế ta được

\(\hept{\begin{cases}a+6=0\\c+a-6=0\\a-c=1\end{cases}}\)

Vô nghiệm vậy không tồn tại a, c thỏa cái đó

10 tháng 12 2016

a/ Ta có

\(\frac{10x-4}{x^3-4x}=\frac{a}{x}+\frac{b}{x-2}+\frac{c}{x+2}=\frac{\left(a+b+c\right)x^2+\left(2b-2c\right)x-4a}{x^3-4x}\)

Đồng nhất thức 2 vế ta được

\(\hept{\begin{cases}a+b+c=0\\2b-2c=10\\-4a=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=-3\end{cases}}\)

11 tháng 8 2016

Xét vế phải : \(\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{\left(x-2\right)^2}=\frac{a\left(x-2\right)^2}{\left(x+1\right)\left(x-2\right)^2}+\frac{b\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}+\frac{c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)

\(=\frac{a\left(x^2-4x+4\right)+b\left(x^2-x-2\right)+c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)

\(=\frac{x^2\left(a+b\right)+x\left(-4a-b+c\right)+\left(4a-2b+c\right)}{\left(x+1\right)\left(x-2\right)^2}\)

So sánh với vế trái, suy ra : 

\(\begin{cases}a+b=2\\-4a-b+c=-1\\4a-2b+c=1\end{cases}\). Giải ra được \(\left(a,b,c\right)=\left(\frac{4}{9};\frac{14}{9};\frac{7}{3}\right)\)

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2