Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x3 + ax + b \(⋮\)x2 - 2x - 3
<=> x3 + ax + b \(⋮\)(x - 3)(x + 1)
=> x = 3 và x = -1 là nghiệm của x3 + ax + b
Khi đó 33 + 3a + b = 0
<=> 3a + b = -27 (1)
Lại có -13 - a + b = 0
<=> -a + b = 1 (2)
Từ (1) và (2) => a = -7 ; b = -6
Vậy a = -7 ; b = -6 thì x3 + ax + b \(⋮\)x2 - 2x - 3
Để đa thức 12x^3 - 7x^2 + a + b chia hết cho đa thức 3x^2 + 2x - 1, ta cần thực hiện phép chia đa thức.
4x - 3
_______________________
3x^2 + 2x - 1 | 12x^3 - 7x^2 + a + b
Để đa thức chia hết cho đa thức 3x^2 + 2x - 1, phần dư phải bằng 0. Vì vậy, ta có:
(12x^3 - 7x^2 + a + b) = (3x^2 + 2x - 1)(4x - 3)
Mở ngoặc, ta có:
12x^3 - 7x^2 + a + b = 12x^3 - 9x^2 + 8x^2 - 6x - 4x + 3
So sánh các hệ số tương ứng, ta có:
-7x^2 + a + b = -9x^2 + 8x^2 - 6x - 4x + 3
Từ đó, ta có hệ phương trình:
-7 = -9 + 8 => 8 = 9 - 7 => 8 = 2
a = -6
b = -4
Vậy, hệ số a = -6 và b = -4 để đa thức 12x^3 - 7x^2 + a + b chia hết cho đa thức 3x^2 + 2x - 1.
\(\Leftrightarrow2x^3-3x^2+x+a=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\Leftrightarrow-54-27-3+a=0\Leftrightarrow a=84\)
Cảm ơn bạn nhiều nhưng có cách khác không ạ. Cụ thể hơn là chia đa thức 1 biến đã sắp xếp ý. Chứ cách trên mình đọc không hiểu gì hết :((((
Đa thức \(K\left(x\right)=6x^3-2x^2-ax-2\)chia hết cho nhị thức 2x - 3 khi \(\frac{3}{2}\)là nghiệm của K(x)
hay \(K\left(\frac{3}{2}\right)=0\Leftrightarrow6.\left(\frac{3}{2}\right)^3-2.\left(\frac{3}{2}\right)^2-\frac{3}{2}a-2=0\)
\(\Leftrightarrow\frac{81}{4}-\frac{9}{2}-\frac{3}{2}a-2=0\Leftrightarrow\frac{3}{2}a=\frac{55}{4}\)
\(\Leftrightarrow a=\frac{55}{6}\)
Vậy \(a=\frac{55}{6}\)thì \(6x^3-2x^2-ax-2\)chia hết cho 2x - 3
\(f\left(x\right)=2x^2+ax+5⋮x-3\left(dư5\right)\)
Ta có \(x-3=0\Leftrightarrow x=3\)
\(\Leftrightarrow x-3\) là nghiệm của \(f\left(x\right)-5\)
\(\Leftrightarrow2.3^2+a3+5-5=0\Leftrightarrow3a+18=0\Leftrightarrow a=-6\)
(10 x 2 – 7x + a) ⁝ (2x – 3)
Để 10 x 2 – 7x + a chia hết cho 2x – 3 thì a + 12 = 0 ó a = -12
Đáp án cần chọn là: C