Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2f\left(x\right)-3f\left(\frac{1}{x}\right)=x^3\)
Thay \(x=2\) vào đẳng thức trên ta có : \(2f\left(2\right)-3f\left(\frac{1}{2}\right)=8\)
\(\Leftrightarrow2\left[2f\left(2\right)-3f\left(\frac{1}{2}\right)\right]=16\Leftrightarrow4f\left(2\right)-6f\left(\frac{1}{2}\right)=16\)(1)
Thay \(x=\frac{1}{2}\) vào đẳng thức trên ta có : \(2f\left(\frac{1}{2}\right)-3f\left(2\right)=\frac{1}{8}\)
\(\Leftrightarrow3\left[2f\left(\frac{1}{2}\right)-3f\left(2\right)\right]=\frac{3}{8}\Leftrightarrow6f\left(\frac{1}{2}\right)-9f\left(2\right)=\frac{3}{8}\)(2)
Lấy (1) cộng (2) ta được : \(4f\left(2\right)-9f\left(2\right)=16+\frac{3}{8}\Leftrightarrow-5f\left(2\right)=\frac{131}{8}\)
\(\Rightarrow f\left(2\right)=\frac{131}{8}:\left(-5\right)=-\frac{131}{40}\)
Xét x = 2
=> 2f(2) - 3f(1/2) = 8
Xét x = 1/2
=> 2f(1/2) - 3f(2) = 1/8
Đặt a = f(2), b = f(1/2)
Ta có hệ PT:
2a - 3b = 8
2b - 3a = 1/8
<=>
2a = 8 + 3b
16b - 24a = 1
<=>
2a = 8 + 3b
16b - 12(8 + 3b) = 1
<=>
2a = 8 + 3b
16b - 96 - 36b = 1
<=>
2a = 8 + 3b
20b = -97
<=>
a = -131/40
b = -97/20
Vậy f(2) = -131/40
bài 1: f(x) + 2f(2-x)=3x (1)
f(2-x)+2[(2-(2-x)]=3(2-x) suy ra f(2-x)+2f(x)=6-3x suy ra 2f(2-x)+4f(x)=12-6x (2)
Lấy (2)-(1) ta có: 4f(x)-f(x)=12-6x-3x suy ra f(x)=4-3x
vậy f(2)=4-3*2=-2
Bài 2 tương tự: f(x)+3f(1/x)=x^2 (1)
f(1/x)+3f(x)=1/x^2 suy ra 3f(1/x)+9f(x)=3/x^2 (2)
Lấy (2)-(1) ta có: 9f(x)-f(x)=3/x^2-x^2 suy ra f(x)=(3-x^4)/8x^2
Vậy f(2)=(3-2^4)(8*2^2)=-13/32