K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Cấp số cộng có: \({u_1} = 4,\) công sai \(d = 5\)

Số hạng tổng quát của dãy số là: \({u_n} = 4 + 5\left( {n - 1} \right) = 5n- 1\)

Số hạng thứ 5: \({u_5} = 5.5- 1 = 24\)

Số hạng thứ 100: \({u_{100}} = 5.100- 1 = 499\)

b) Cấp số cộng có: \({u_1} = 1,\) công sai \(d =  - 2\)

Số hạng tổng quát của dãy số là: \({u_n} = 1 + \left( { - 2} \right)\left( {n - 1} \right) = -2n+3\)

Số hạng thứ 5: \({u_5} = (-2).5+3 =  - 7\)

Số hạng thứ 100: \({u_{100}} = (-2).100+3 =  - 197\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Cấp số nhân có \({u_1} = 1,\;\;q = \;4\)

Số hạng tổng quát: \({u_n} = {4^{n - 1}}\)

Số hạng thứ 5: \({u_5} = {4^{5 - 1}} = 256\)

Số hạng thứ 100: \({u_{100}} = {4^{100 - 1}} =  {4^{99}}\).

b) Cấp số nhân có \({u_1} = 2,\;q =  - \frac{1}{4}\)

Số hạng tổng quát: \({u_n} = 2 \times {\left( { - \frac{1}{4}} \right)^{n - 1}}\)

Số hạng thứ 5: \({u_5} = 2 \times {\left( { - \frac{1}{4}} \right)^{5 - 1}} = \frac{1}{{128}}\)

Số hạng thứ 100: \({u_{100}} = 2 \times {\left( { - \frac{1}{4}} \right)^{100 - 1}} = \frac{ -1}{{2^{197}}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\begin{array}{l}{u_1} + {u_2} + {u_3} =  - 1 \Leftrightarrow {u_1} + {u_1} + d + {u_1} + 2d =  - 1\\ \Leftrightarrow 3{u_1} + 3d =  - 1\\ \Leftrightarrow 3.\left( {\frac{1}{3}} \right) + 3d =  - 1\\ \Leftrightarrow 3d =  - 2\\ \Leftrightarrow d =  - \frac{2}{3}\end{array}\)

Công thức tổng quát của số hạng \({u_n}\): \({u_n} = \frac{1}{3} + \left( {n - 1} \right)\left( { - \frac{2}{3}} \right)\)

b)    Ta có:

\(\begin{array}{l} - 67 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = 101\\ \Leftrightarrow n = 102\end{array}\)

 - 67 là số hạng thứ 102 của cấp số cộng

c)    Ta có:

\(\begin{array}{l}7 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 =  - 10\\ \Leftrightarrow n =  - 9\end{array}\)

 7 không là số hạng của cấp số cộng

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có: \({u_n} =  - 3 + \left( {n - 1} \right).5\)

b)    Ta có:

\(\begin{array}{l}492 =  - 3 + \left( {n - 1} \right).5\\ \Leftrightarrow n - 1 = 99\\ \Leftrightarrow n = 100\end{array}\)

492 là số hạng thứ 100 của cấp số cộng

c)    Ta có: \(300 =  - 3 + \left( {n - 1} \right).5 \Leftrightarrow n - 1 = 60,6\)

300 không là số hạng của cấp số cộng

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).

Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\)

Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: D

Công thức số hạng tổng quát của cấp số cộng un = – 5 + (n – 1).4 = 4n – 9.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).

Vậy ta có: \({u_n} = {u_1}.{q^{n - 1}} = {5.2^{n - 1}}\)

b) Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{{10}}\).

Vậy ta có: \({u_n} = {u_1}.{q^{n - 1}} = 1.{\left( {\frac{1}{{10}}} \right)^{n - 1}} = \frac{1}{{{{10}^{n - 1}}}}\).

2 tháng 7 2017

a)

-1 3 7 11 15 19 23 27
27 23 19 15 11 7 3 - 1

Nhận xét: Tổng của các số hạng ở mỗi cột bằng nhau và bằng 26

b) Tổng các số hạng của cấp số cộng là: 26.8/2 = 104

27 tháng 2 2023

Gọi số đầu là x.

Cấp số cộng là q.

=> Số đầu, thứ 2. 3,4,5 là x,x+q,x+2q,x+3q,x+4q.

Tổng số 1 và 3 là x + (x+2q) = 28

Tổng số 3 và cuối là (x+2q)+(x+4q)=40.

Ta đã có 2 phương trình tạo thành 1 hệ phương trình.

Giải hệ tìm x và q.

Chúc em học tốt!

Câu 2:

\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2u_1+4d=20\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u_1+4d-2u_1-5d=20-17\\2u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-d=3\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-3\\2u_1=17-5d=17+5\cdot3=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1=16\\d=-3\end{matrix}\right.\)

Câu 1:

Để a,b,c lập thành cấp số cộng thì

\(\left[{}\begin{matrix}a+c=2b\\a+b=2c\\b+c=2a\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x+1+x^2-1=2\cdot\left(3x-2\right)\\x+1+3x-2=2\left(x^2-1\right)\\x^2-1+3x-2=2\left(x+1\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2+x-6x+4=0\\2x^2-2=4x-1\\x^2+3x-3-2x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2-5x+4=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left(x-1\right)\left(x-4\right)=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left\{1;4\right\}\\x\in\left\{\dfrac{2+\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right\}\\x\in\left\{\dfrac{-1+\sqrt{21}}{2};\dfrac{-1-\sqrt{21}}{2}\right\}\end{matrix}\right.\)