Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m = -4 thì:
\(x^2-5x+\left(-4\right)-2=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)
Pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
a Khi m=1 thì (1) sẽ là x^2+1=0
=>x thuộc rỗng
b: Thay x=1 vào (1),ta được:
1^2-2(m-1)+m^2=0
=>m^2+1-2m+2=0
=>m^2-2m+3=0
=>PTVN
c: Thay x=-3 vào pt, ta được:
(-3)^2-2*(m-1)*(-3)+m^2=0
=>m^2+9+6(m-1)=0
=>m^2+6m+3=0
=>\(m=-3\pm\sqrt{6}\)
bài 1: pt (2) hình như có vấn đề
b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)
=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6
bài 2: ĐK: x >0 và x khác 1
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)
b) ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min
c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)
để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
x | 4(t/m) | 0(k t/m) | 9(t/m) | PTVN |
=> x thuộc (4;9)
bìa 3: câu này bạn đăng riêng mình làm rồi đó
Lời giải:
a) Để 2 pt cùng có nghiệm thì:
\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)
b)
Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:
Ta có:
\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)
\(\Rightarrow 5a=5m\Leftrightarrow a=m\)
Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$
$\Leftrightarrow m=0$ hoặc $m=3$
Bài 1: (Mình vẫn ko hiểu lắm là phải làm ntn nên sẽ làm 2 cách)
a) \(-30x^2+30x-7,5=0\)
C1: Ta có: \(a=-30\) ; \(b=30\) ; \(c=-7,5\)
\(\Rightarrow\) \(\Delta=b^2-4ac=30^2-4.\left(-30\right).\left(-7,5\right)\)
\(\Delta=1012>0\) (lấy gần bằng nhưng vì \(\Delta\) ko có giá trị gần bằng nên chỉ ghi là "=" thôi)
\(\Rightarrow\)\(\sqrt{\Delta}=\sqrt{1012}=2\sqrt{253}\)
Vậy p/t đã cho có 2 nghiệm phân biệt là:
\(x_1=\frac{b^2-\sqrt{\Delta}}{2a}=\frac{\left(-30\right)^2-2\sqrt{253}}{2.\left(-30\right)}\approx-14,47\)
\(x_2=\dfrac{b^2+\sqrt{\Delta}}{2a}=\dfrac{\left(-30\right)^2+2\sqrt{253}}{2.\left(-30\right)}\approx-15.53\)
C2: Ta có: \(a=30\) ; \(b'=-15\) ; \(c=7,5\)
\(\Rightarrow\) \(\Delta'=b'^2-ac=\left(-15\right)-30.7,5\)
\(\Delta=0\)
Vậy p/t đã cho có nghiệm kép:
\(x_1=x_2=-\dfrac{b'}{a}=-\dfrac{\left(-15\right)}{30}=\dfrac{1}{2}=0,5\)
b) (Tương tự)
Bài 2:
\(x^2-2\left(m+2\right)x+m^2-12=0\)
a) Tại \(m=-4\) thì:
\(x^2-2\left(-4+2\right)x+\left(-4\right)^2-12=0\)
\(\Leftrightarrow\) \(x^2-2.\left(-2\right)x+\left(-4\right)^2-12=0\)
\(\Leftrightarrow\) \(x^2+4x+16-12=0\)
\(\Leftrightarrow\) \(x^2+4x+4=0\)
\(\Leftrightarrow\) \(\left(x+2\right)^2=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\) \(x=-2\)