K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2020

Đặt f(x) = x4 + ax3 + b

      g(x) = x2 - 1 = ( x - 1 )( x + 1 )

f(x) chia hết cho g(x) <=> x4 + ax3 + b chia hết cho ( x - 1 )( x + 1 )

<=> \(\hept{\begin{cases}\left(x^4+ax^3+b\right)⋮\left(x-1\right)\left[1\right]\\\left(x^4+ax^3+b\right)⋮\left(x+1\right)\left[2\right]\end{cases}}\)

Áp dụng định lí Bézout vào [1] ta có :

f(x) chia hết cho ( x - 1 ) <=> f(1) = 0

<=> 1 + a + b = 0

<=> a + b = -1 (1)

Áp dụng định lí Bézout vào [2] ta có :

f(x) chia hết cho ( x + 1 ) <=> f(-1) = 0

<=> 1 - a + b = 0

<=> -a + b = -1 (2)

Từ (1) và (2) => \(\hept{\begin{cases}a+b=-1\\-a+b=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}\)

Vậy a = 0 ; b = -1

21 tháng 9 2021

\(\left(2x^2+ax+b\right):\left(x-1\right)\left(x-2\right).dư.6\\ \Leftrightarrow2x^2+ax+b=\left(x-1\right)\left(x-2\right)+6\)

Thay \(x=1\)

\(\Leftrightarrow2\cdot1^2+a+b=6\\ \Leftrightarrow a+b=4\left(1\right)\)

Thay \(x=2\)

\(2\cdot2^2+2a+b=6\\ \Leftrightarrow2a+b=-2\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\) ta có hpt: \(\left\{{}\begin{matrix}a+b=4\\2a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-6\\2a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-6\\b=10\end{matrix}\right.\)

 

 

AH
Akai Haruma
Giáo viên
21 tháng 9 2021

Dòng số 2 không có cơ sở để khẳng định em nhé.

25 tháng 10 2016

cái này đồng nhất hệ số đi nhá

25 tháng 8 2023

  Để \(P\left(x\right)=x^4+ax+b⋮x^2-1\) thì \(P\left(x\right)=\left(x^2-1\right)Q\left(x\right)=\left(x-1\right)\left(x+1\right)Q\left(x\right)\) với \(Q\left(x\right)\) là đa thức có bậc là 2.

 Suy ra \(P\left(-1\right)=P\left(1\right)=0\)

 \(\Rightarrow\left\{{}\begin{matrix}\left(-1\right)^4+a.\left(-1\right)^3+b=0\\1^4+a.1^3+b=0\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}b-a=-1\\a+b=-1\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)

 Với \(\left(a,b\right)=\left(0;-1\right)\) thì \(P\left(x\right)=x^4-1=\left(x^2-1\right)\left(x^2+1\right)\) thỏa mãn ycbt. Vậy \(\left(a,b\right)=\left(0;-1\right)\)

23 tháng 12 2020

a) Điều kiện: \(x\ne\pm1\)

 \(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)

\(B=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}-\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{-4}{\left(x-1\right).\left(x+1\right)}\)

\(B=\frac{x^2-x-x+1-x^2-x-x-1+4}{\left(x-1\right).\left(x+1\right)}\)

\(B=\frac{-4x+4}{\left(x-1\right).\left(x+1\right)}=\frac{-4.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}=\frac{-4}{x+1}\)

b) \(x^2-x=0\Leftrightarrow x.\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Khi  \(x=0\Leftrightarrow\frac{-4}{0-1}=\frac{-4}{-1}=4\)

Khi \(x=1\Leftrightarrow\frac{-4}{1-1}=0\)

c) \(\frac{-4}{x+1}=-3\Leftrightarrow-3.\left(x+1\right)=-4\Leftrightarrow x+1=\frac{4}{3}\Leftrightarrow x=\frac{1}{3}\)

4 tháng 10 2016

a) Đặt \(f\left(x\right)=x^4+ax+b\text{⋮}x^2-4=\left(x+2\right)\left(x-2\right)\)

Áp dụng định lý Bê du có :

\(f\left(2\right)=f\left(-2\right)=0\)

\(\Rightarrow2^4+\left(-2\right).a+b=\left(-2\right)^4+2a+b\)

\(\Leftrightarrow a=0\)

Do đó \(\hept{\begin{cases}a=0\\b\in R\end{cases}}\)

Vậy ...

b) Mình không làm được :) Mình sẽ hỏi cô mình và trả lời cho bạn sau.

4 tháng 10 2016

a/ Đặt \(f\left(x\right)=x^4+ax+b=\left(x-2\right)\left(x+2\right).Q\left(x\right)\)với Q(x) là đa thức thương

Suy ra : \(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=16-2a+b=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2a+b=-16\\-2a+b=-16\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=-16\end{cases}}\)

b/ Ta có \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

Vậy \(x^2+ax+b\) sẽ có một trong hai dạng : \(x^2+ax+b=x^2+2x+2\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)

hoặc \(x^2+ax+b=x^2-2x+2\Rightarrow\hept{\begin{cases}a=-2\\b=2\end{cases}}\)