K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)

Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.

Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.

Vậy a = 0 và b = 2.

17 tháng 5 2018

Đồ thị hàm số y = ax + b đi qua A(2; -2) ⇔ 2.a + b = -2 (1)

Đồ thị hàm số y = ax + b đi qua B(-1 ; 3) ⇔ a.(-1) + b = 3 (2)

Từ (1) và (2) ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

4 tháng 5 2018

Đồ thị hàm số y = ax + b đi qua A(3 ; -1) ⇔ a.3 + b = -1

Đồ thị hàm số y = ax + b đi qua B(-3 ; 2) ⇔ a.(-3) + b = 2.

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

30 tháng 11 2017

Đồ thị hàm số y = ax + b đi qua A(-4; -2) ⇔ a.(-4) + b = -2

Đồ thị hàm số y = ax + b đi qua B(2 ; 1) ⇔ a.2 + b = 1

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

13 tháng 3 2017

a) Đồ thị hàm số y = ax + b đi qua A(2; -2) ⇔ 2.a + b = -2 (1)

Đồ thị hàm số y = ax + b đi qua B(-1 ; 3) ⇔ a.(-1) + b = 3 (2)

Từ (1) và (2) ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Đồ thị hàm số y = ax + b đi qua A(-4; -2) ⇔ a.(-4) + b = -2

Đồ thị hàm số y = ax + b đi qua B(2 ; 1) ⇔ a.2 + b = 1

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Đồ thị hàm số y = ax + b đi qua A(3 ; -1) ⇔ a.3 + b = -1

Đồ thị hàm số y = ax + b đi qua B(-3 ; 2) ⇔ a.(-3) + b = 2.

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)

Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.

Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.

Vậy a = 0 và b = 2.

Kiến thức áp dụng

+ Đồ thị hàm số y = f(x) đi qua điểm A(x0; y0) ⇔ y0 = f(x0).

+ Giải hệ phương trình bằng phương pháp cộng đại số

   1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

   2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

   3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

2 tháng 12 2017

Với a = 3 hàm số có dạng y = 3x + b.

Đồ thị hàm số đi qua điểm (2; 2), nên ta có:

    2 = 3.2 + b => b = 2 – 6 = - 4

Vậy hàm số là y = 3x – 4

1 tháng 2 2018

a) Với a = 2 hàm số có dạng y = 2x + b.

Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:

    0 = 2.1,5 + b => b = -3

Vậy hàm số là y = 2x – 3

b) Với a = 3 hàm số có dạng y = 3x + b.

Đồ thị hàm số đi qua điểm (2; 2), nên ta có:

    2 = 3.2 + b => b = 2 – 6 = - 4

Vậy hàm số là y = 3x – 4

c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b

Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:

√3 + 5 = √3 . 1 + b => b = 5

Vậy hàm số là y = √3 x + 5

a: Vì (d) song song với y=3x+1 nên a=1

Vậy: (d): y=x+b

Thay x=2 và y=5 vào (d), ta được:

b+2=5

hay b=3

b: Theo đề,ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=5\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=a+2=\dfrac{-5}{3}+2=\dfrac{1}{3}\end{matrix}\right.\)