K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{2}=\frac{3x}{3.5}=\frac{2y}{2.2}=\frac{3x-2y}{15-4}=\frac{44}{11}=4\)

\(\hept{\begin{cases}\frac{x}{5}=4\Rightarrow x=20\\\frac{y}{2}=4\Rightarrow y=8\end{cases}}\)

Vậy x=20 và y=8

6 tháng 11 2017

ai giai giup minh cai

4 tháng 7 2017

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

4 tháng 7 2017

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21

22 tháng 7 2017

b) \(\text{Ta có}:\frac{x}{5}=\frac{y}{2}\Leftrightarrow5y=2x\Leftrightarrow y=\frac{2x}{5}\)

Thay \(y=\frac{2x}{5}\)biểu thức \(2x-2y=44\).Ta được : 

\(2x-2.\frac{2x}{5}=44\Leftrightarrow10x-4x=220\Leftrightarrow6x=220\Leftrightarrow x=\frac{110}{3}\)

Với \(x=\frac{110}{3}\Rightarrow y=\frac{\frac{2.110}{3}}{5}=\frac{44}{3}\)

c) \(2x=3y\Rightarrow x=\frac{3y}{2}\)

Thay vào biểu thức \(x+y=10\), ta được : 

\(\frac{3y}{2}+y=10\Leftrightarrow3y+2y=20\Leftrightarrow5y=20\Leftrightarrow y=4\)

\(\Rightarrow x=\frac{3.4}{2}=6\)

21 tháng 7 2017

\(\frac{x}{4}=\frac{y}{6}=\frac{x+y}{4+6}=\frac{90}{10}=9\)

\(\Rightarrow\hept{\begin{cases}x=9\cdot4=36\\y=9\cdot6=63\end{cases}}\)

đây là mình làm tắt.

ở trường chắc bạn học dạng này rồi đúng ko?

hai phần kia làm tương tự bạn nhé! 

5 tháng 8 2018

Đăng ít 1 thôi, nhiều quá bon nó không giải đâu

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

31 tháng 7 2016

a) ta co: x\5=y\3=z\4 va x+2y-z=-121

      Dat: x\5=y\3=z\4=k.suy ra: x=5k;y=3k;z=4k

                                              =5k+2.(3k)-4k

                                              =5k+6k-4k

                                              =7k=-121

                                              =-121:7k=-121\7

suy ra:x\5=-121\7suy ra: -121\7.5=-605\7

          y\3=-121\7 suy ra:-121\7.3=-363\7

          z\4=-121\7 suy ra:-121\7.3=-484\7

a) \(\frac{x}{2}=\frac{y}{3}\)    \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16

Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)

          \(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)

Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)

=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)

Đến đây làm nốt

20 tháng 10 2018

should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)

\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)

\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)

áp dụng t/c dãy tỉ sô bằng nhau ta có:

\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)

\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)

tương tự y và z nha