Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=-35x^5y^4z\\ b,=6x^2-30x-6x^2-3x=-33x\\ c,=x^3-9x^2-2x^2+18x-x+9=x^3-11x^2+17x+9\\ 2,\\ A\left(x\right)+B\left(x\right)=10-2x+4x^3-5x^2-10x^3-5x+6x^2-20\\ =-6x^3+x^2-7x-10\\ A\left(x\right)-B\left(x\right)=10-2x+4x^3-5x^2+10x^3+5x-6x^2+20\\ =14x^3-11x^2+3x+30\\ 3,\\ a,M\left(x\right)=5x+20=0\\ \Leftrightarrow x=-4\\ b,N\left(x\right)=100x^2-49=0\\ \Leftrightarrow\left(10x-7\right)\left(10x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{10}\\x=-\dfrac{7}{10}\end{matrix}\right.\\ c,P\left(x\right)=3x-15=0\\ \Leftrightarrow x=5\)
Bài 1;
a)\(5x^3yz.\left(-7x^2y^3\right)=-35.x^5y^4z\)
b)\(6x\left(x-5\right)-x\left(6x+3\right)=6x^2-30x-6x^2-3x=-33x\)
c) \(\left(x-9\right)\left(x^2-2x-1\right)=x^3-2x^2-x-9x^2+18x+9=x^3-11x^2+17x+9\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
\(x\left(x-3\right)+x-3=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
KL:......................
\(x^3-5x=0\)
\(x\left(x^2-5\right)=0\)
Làm tương tự như câu a
@_@ n...h..i......ề....u q...u.....................á!
Câu 1: Chứng minh giá trị của biểu thức không phụ thuộc vào biến x
A = x (5x - 3) - x2 ( x - 1) + x (x2 - 6x) + 3x - 10
A= 5x2-3x -x3 +x2 +x3-6x2+3x-10
A= -10
Vậy giá trị của biểu thức A ko phụ thuộc vào biến x
B = ( 2x + 1) x - x2 (x + 2) + x3 - x + 3
B= 2x2+x-x3-2x2+x3-x+3
B= 3
Vậy giá trị của biểu thức B ko phụ thuộc vào biến x
C = 5x ( x2 - 7x + 2) - x2 (5x - 8) + 27x2 - 10x + 2
C= 5x3-35x2+10x-5x3+8x2+27x2-10x+2
C= 2
Vậy giá trị của biểu thức C ko phụ thuộc vào biến x
Câu 2: Tìm x:
1. 4x (3x + 2) - 6x (2x + 5) + 21 (x - 1) = 0
=> 12x2 + 8x -12x2 -30x +21x -21=0
=> -x -21 = 0
=> x = -21
Vậy x = -21
2. 5x (12x + 7) - 3x (20x - 5) = -100
=> 60x2 + 35x - 60x2 + 15x +100=0
=> 50x + 100 =0
=> x = -2
Vậy x = -2
4. 10 (3x - 2) - 3 (5x + 2) + 5 (11 - 4x) = 25
=> 30x-20-15x-6+55-20x-25=0
=> -5x +4 =0
=> x = 4/5
Vậy x = 4/5
Câu 1
a) \(A=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)+3x-10\)
\(A=5x^2-3x-x^3+x^2+x^3-6x^2+3x-10\)
\(A=-10\)
Vậy biểu thức A không phụ thuộc vào biến x
b) \(B=\left(2x+1\right)x-x^2\left(x+2\right)+x^3-x+3\)
\(B=2x^2+x-x^3-2x^2+x^3-x+3\)
\(B=3\)
Vậy biểu thức B không phụ thuộc vào biến x
c) \(C=5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x+2\)
\(C=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x+2\)
C = 2
Vậy biểu thức C không phụ thuộc vào biến x
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)
\(\Leftrightarrow8x^2+49x-15=0\)
\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)
=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x
=-10