Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2010x^2+2009x+2010\)
\(=\left(x^4-x\right)+2010\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2-x+2010\right)\left(x^2+x+1\right)\)
a)
x4+2010x2+2009x+2010
= (x4-x)+(2010x2+2010x+2010)
= x(x3-1)+2010(x2+x+1)
= x(x-1)(x2+x+1) +2010(x2+x+1)
= (x2+x+1)(x2-x+2010)
b)
x3-x2-5x+21
= x3+3x2-4x2-12x+7x+21
= x2(x+3)-4x(x+3)+7(x+3)
= (x+3)(x2-4x+7)
a.\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)^3+z^3\right]-a^3-b^3-c^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b.\(x^4+2010x^2+2009x+2010\)
\(=\left(x^4-x\right)+\left(2010x^2+2010x+2010\right)\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
sửa đề:\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
giải:
\(\left(x+y+z\right)^3-x^3-y^3-z^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ =3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b,W = \(x^4+x^2+1+2009x^2+2009x+2009\)
\(=\left(x^4+2x^2+1\right)-x^2+2009\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2009\left(x^2+x+1\right)\)
\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
a) (x+y+z)3 -x3 - y3 - z3
= [(x + y + z) - z][(x+ y + z)2 + x2 + x(x+ y + z)] - (y + z)(y2+ z2 - yz)
= (y+z)(x2 + y2 + z2 + 2xy + 2yz + 2xz + 2x2 + xy + xz) - (y + z)( y2+ z2 - yz)
= (y+z)(x2 + y2 + z2 + 2xy + 2yz + 2xz + 2x2 + xy + xz - y2+ z2 - yz)
= (y+z)(3x2 + 3xy + 3yz + 3xz )
= 3(y+z)(x2 + xy + yz + xz )
= 3(y+z)[x(x+y) + z(x+y)]
= 3(x+y)(y+z)(x+z)
b) x4 + 2010x2 + 2009x + 2010
= x4 +x2 +1 + 2009x2 + 2009x + 2009
= (x4 + 2x2 +1 -x2) + 2009(x2 +x +1)
= ( x2 +1 )2 -x2 + 2009(x2 +x +1)
= (x2 +x +1)(x2 -x +1) + 2009(x2 +x +1)
= (x2 +x +1)(x2 -x +1+2009)
= (x2 +x +1)(x2 -x +2010)
Áp dụng định lý Bezout, số dư của phép chia f(x) cho g(x) là \(f\left(1\right)\)
\(f\left(1\right)=1+2-3-4+...-2011-2012\)
\(=-2-2-2-....-2\) (\(\frac{2012}{2}=1006\) số -2)
\(=-2012\)
Vậy số dư là \(-2012\)
nguyenthitrinh bài này đúng khó
Mình cũng đang bí
\(x^4+2010x^2+2009x+2010\\ =\left(x^4-x\right)+\left(2010x^2+2010x+2010\right)\\ =x\left(x^3-1\right)+2010\left(x^2+x+1\right)\\ =x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^2-x+2010\right)\)