Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
a, `4x^2-24x+36=(x-3)^3`
`<=>4(x^2-6x+9)-(x-3)^3=0`
`<=>4(x-3)^2-(x-3)^3=0`
`<=>(x-3)^2.(4-x+3)=0`
`<=>(x-3)^2.(7-x)=0`
`<=>x-3=0` hoặc `7-x=0`
`<=>x=3` hoặc `x=7`
b, `(8x^3-7x^2):x^2=3x+\sqrt{\frac{9}{25}}`
`<=>8x^3:x^2-7x^2:x^2=3x+\sqrt{\frac{9}{25}}`
`<=>8x-7=3x+\sqrt{\frac{9}{25}}`
`<=>8x-7=3x+3/5`
`<=>8x=3x+\frac{38}{5}`
`<=>8x-3x=3x+\frac{38}{5}-3x`
`<=>5x=\frac{38}{5}`
`<=>x=\frac{38}{25}`
,(3x-1) mũ 2=9/16
<=> (3x-1)^2 = ( ±3/4)^2
<=> l3x-1l = 3/4
Hoặc 3x-1 = 3/4
<=> 3x= 3/4 + 1
<=> x = 7/4 : 3
<=> x= 7/1
heoheo lần sau bạn đánh = kí hiệu đi :(((
a/ \(\dfrac{x}{3}+\dfrac{2x-1}{6}=\dfrac{1}{2}\)
\(\Leftrightarrow2x+2x-1=3\)
<=> 4x = 4 <=> x = 1
Vậy x = 1
b/ \(\dfrac{3x+1}{2}+\dfrac{x-1}{3}=\dfrac{x-9}{6}\)
\(\Leftrightarrow3\left(3x+1\right)+2\left(x-1\right)=x-9\)
\(\Leftrightarrow9x+3+2x-2=x-9\)
\(\Leftrightarrow10x=-10\Leftrightarrow x=-1\)
Vậy pt có nghiệm x = -1
c/ \(\dfrac{x-1}{x-2}=\dfrac{x+3}{x+2}\) ĐKXĐ: \(x\ne\pm2\)
<=> \(\left(x-1\right)\left(x+2\right)=\left(x+3\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+2x-x-2=x^2-2x+3x-6\)
\(\Leftrightarrow0x=-4\left(voly\right)\)
Vậy pt vô nghiệm
d/ \(\dfrac{3x-1}{3x+1}+\dfrac{x-3}{x+3}=2\) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-3\\x\ne-\dfrac{1}{3}\end{matrix}\right.\)
pt <=> \(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(3x+1\right)\left(x+3\right)}+\dfrac{\left(x-3\right)\left(3x+1\right)}{\left(3x+1\right)\left(x+3\right)}=\dfrac{2\left(3x+1\right)\left(x+3\right)}{\left(3x+1\right)\left(x+3\right)}\)
=> (3x-1)(x+3) + (x-3)(3x+1) = 2(3x+1)(x+3)
\(\Leftrightarrow3x^2+8x-3+3x^2-8x-3=6x^2+20x+6\)
\(\Leftrightarrow-20x=12\Leftrightarrow x=-\dfrac{3}{5}\left(tm\right)\)
Vậy pt có nghiệm x=....
e/ như ý d
\(M=\left(\dfrac{x-x^2}{\left(x-1\right)^2}+\dfrac{1}{1+x}-\dfrac{x}{x-1}\right)\cdot\left(\dfrac{3x-1}{x}+\dfrac{1}{x+1}-1\right)\)
\(=\left(\dfrac{-x}{x-1}-\dfrac{x}{x-1}+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(3x-1\right)\left(x+1\right)+x-x\left(x+1\right)}{x\left(x+1\right)}\)
\(=\dfrac{-2x\left(x+1\right)+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{3x^2+2x-1+x-x^2-x}{x\left(x+1\right)}\)
\(=\dfrac{-2x^2-2x+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2x^2+2x-1}{x\left(x+1\right)}\)
\(=\dfrac{-2x^2-x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2x^2+2x-1}{x\left(x+1\right)}\)
\(=\dfrac{\left(-2x^2-x-1\right)\left(2x^2+2x-1\right)}{x\left(x+1\right)^2\cdot\left(x-1\right)}\)
\(\left(\dfrac{3x-1}{x+1}-1\right)\)bạn sửa lại đề bào thế này
\(M=\dfrac{x-x^2}{1-x^2}+\dfrac{1}{1+x}\cdot\dfrac{3x-1}{x+1}-1\)
\(=\dfrac{x\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}+\dfrac{3x-1}{\left(x+1\right)^2}-1\)
\(=\dfrac{x^2+x+3x-1-x^2-2x-1}{\left(x+1\right)^2}\)
\(=\dfrac{2x-2}{\left(x+1\right)^2}\)
a, \(x^2-2.\frac{1}{3}x+\frac{1}{9}=\left(x-\frac{1}{3}\right)^2\)
Thay x = 9 vào ta được : \(=\left(9-\frac{1}{3}\right)^2=\left(\frac{26}{3}\right)^2=\frac{676}{9}\)
\(x^2-\frac{2}{3}x+\frac{1}{9}\)
Thay \(x=9\) và ta được:
\(9^2-\frac{2}{3}9+\frac{1}{9}\)\(=81-6+\frac{1}{9}\)\(=\frac{676}{9}\)
\(\dfrac{x+3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\)
\(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)