Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y=3/4
=>x/3=y/4
=>x/15=y/20
y/z=5/7
=>y/5=z/7
=>y/20=z/28
=>x/15=y/20=z/28=(2x+3y-z)/(2*15+3*20-28)=186/62=3
=>x=45; y=60; z=84
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\\ \Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x+y-z}{10+15-12}=\dfrac{-26}{13}=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-20\\y=-30\\z=-24\end{matrix}\right.\)