Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x^2\ge0\forall x\)
\(y^2\ge0\forall y\)
\(\Rightarrow x^2+y^2\ge0\)
Dấu = xaye ra khi và chỉ khi x=y=0
Ta có:\(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\Rightarrow x=1\\y+2=0\Rightarrow y=-2\end{cases}}\)
Ta có:\(\left(x-11+y\right)^2\ge0\forall x,y\)
\(\left(x-4-y\right)^2\ge0\)
\(\Rightarrow\left(x-11+y\right)^2+\left(x-4-y\right)^2\ge0\)
Dấu = xaye ra khi và chỉ khi \(\hept{\begin{cases}x-11+y=0\Rightarrow x+y=11\\x-4-y=0\Rightarrow x-y=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(11+4\right):2=7,5\\y=11-7,5=3,5\end{cases}}\)
a)vì x^2 và y^2 luôn luôn lớn hớn hoặc bằng 0 (1)
mà x^2+y^2=0
<=>x,y=0
b) cũng từ (1)
mà (x-1)^2+(y+2)^2=0
=>x-1=0=>x=1
y+2=0=>y=-2
c)cũng từ 1
=>x-11+y=0 (2)
và x-4-y=0 (3)
vì x-11=x-4-7
vì (3) là x-4-y
(2) là x-4-7+y => không tồn tại x thõa mãn đề bài
Câu 2:
a: Ta có: \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{378}{395}\\z=2004\end{matrix}\right.\)
b: \(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{3}{2}\right|+\left|x-y-z-\dfrac{1}{2}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+\dfrac{3}{2}=0\\x-y-z-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{3}{2}\\z=\dfrac{3}{2}\end{matrix}\right.\)
x,y =0
Tích cho mik nha
x2 + y 2 = 0
x= 0
y=0
học tốt