Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3\)\(-\)\(\frac{1}{4}x\)\(=\)\(0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2=0,5^2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=+-0,5\end{cases}}\)
Vậy .............................
b) \(\left(2x-1\right)^2\)\(-\)\(\left(x+3\right)^2\)\(=\)\(0\)
\(\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)
\(\left(3x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-4=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=4\end{cases}}\)\(\orbr{\begin{cases}x=\frac{-2}{3}\\x=4\end{cases}}\)
Vậy ................................
c) \(x^2\)\(\left(x-3\right)\)\(+\)\(12\)\(-\)\(4x\)\(=\)\(0\)
\(x^2\)\(\left(x-3\right)\)\(-\)\(4\)\(\left(x-3\right)\)\(=\)\(0\)
\(\left(x^2-4\right)\left(x-3\right)\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x-3=0\end{cases}-4=0}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x=3\end{cases}=2^2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=+-2\\x=3\end{cases}}\)
a)\(x^3-\frac{1}{4}x=0\)
\(\Leftrightarrow x\left(x^2-\frac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)
\(x^3-8-\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-x+12\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-12\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2+2x+4-x+12\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2+x+16\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{63}{4}=0\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=2\)
\(\Leftrightarrow x^2-4x-x^2+12=0\\ \Leftrightarrow-4x=-12\\ \Leftrightarrow x=3\)
x.( x - 4)-(x2- 12) = 0
=> x2 - 4x -x2+12=0
=> -4x +12 = 0
=> -4x = -12
=> x=3
hoctot
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
x3 - 8 - (x - 2).(x - 12) = 0
<=> x3 - 23 - (x - 2).(x - 12) = 0
<=> (x - 2).(x2 + 2x + 4) - (x - 2).(x - 12) = 0
<=> (x - 2).(x2 + 2x + 4 - x + 12) = 0
<=> (x - 2).(x2 + x + 16) = 0
<=> x - 2 = 0
<=> x = 2
Vậy: x = 2
x3 - 8 - ( x - 2 )( x - 12 ) = 0
⇔ ( x - 2 )( x2 + 2x + 4 ) - ( x - 2 )( x - 12 ) = 0
⇔ ( x - 2 )( x2 + 2x + 4 - x + 12 ) = 0
⇔ ( x - 2 )( x2 + x + 16 ) = 0
⇔ x - 2 = 0 hoặc x2 + x + 16 = 0
⇔ x = 2 < do x2 + x + 16 = ( x2 + x + 1/4 ) + 63/4 = ( x + 1/2 )2 + 63/4 ≥ 63/4 > 0 ∀ x >
\(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow24x+10=0\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
a: \(3\left(x-3\right)-6x=0\)
=>\(3x-9-6x=0\)
=>-3x-9=0
=>3x+9=0
=>3x=-9
=>\(x=-\dfrac{9}{3}=-3\)
b: Đề thiếu vế phải rồi bạn
c: \(2\left(x-3\right)+3x=9\)
=>2x-6+3x=9
=>5x-6=9
=>5x=6+9=15
=>x=15/5=3
d: \(x\left(x-11\right)+2\left(x-11\right)=0\)
=>\(\left(x-11\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)
e: \(x\left(x+2\right)+8=x^2\)
=>\(x^2+2x+8=x^2\)
=>2x+8=0
=>2x=-8
=>x=-8/2=-4
f: \(8\left(x+1\right)+2x=-2\)
=>\(8x+8+2x=-2\)
=>10x=-2-8=-10
=>\(x=-\dfrac{10}{10}=-1\)
g: 12-3(x+2)=0
=>3(x+2)=12
=>x+2=12/3=4
=>x=4-2=2
a) x2 - 25x = 0
=> x(x - 25) = 0
=> \(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
b) (x - 3)2 - 36x2 = 0
=> (x - 3)2 - (6x)2 = 0
=> \(\left(x+6x-3\right)\left(x-6x-3\right)=0\)
=> \(\orbr{\begin{cases}7x-3=0\\-5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{7}\\x=-\frac{3}{5}\end{cases}}\)
c) 2x(3 - x) + 2x2 = 12
=> 6x - 2x2 + 2x2 = 12
=> 6x = 12
=> x = 2
d) x(x - 2) - x + 2 = 0
=> x(x - 2) - (x - 2) = 0
=> (x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
a. x2 - 25x = 0
\(\Leftrightarrow x\left(x-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
Vậy ...
b.(x-3)2 - 36x2 = 0
\(\Leftrightarrow\left(x-3-6x\right)\left(x-3+6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-5x-3=0\\7x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{5}\\x=\frac{3}{7}\end{cases}}\)
Vậy...
c.2x(3-x)+2x2 = 12
<=> 6x - 2x2 + 2x2 = 12
<=> 6x = 12
<=> x = 2
d. x (x-2) - x + 2 =0
<=> x(x-2 ) - (x - 2 ) = 0
<=> ( x - 2 ) ( x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy...
Lời giải:
$x^2+x-12=0$
$\Leftrightarrow (x^2-3x)+(4x-12)=0$
$\Leftrightarrow x(x-3)+4(x-3)=0$
$\Leftrightarrow (x-3)(x+4)=0$
$\Leftrightarrow x-3=0$ hoặc $x+4=0$
$\Leftrightarrow x=3$ hoặc $x=-4$