K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Tính chất của dãy tỉ số bằng nhau

6 tháng 7 2016

Tính chất của dãy tỉ số bằng nhau

16 tháng 10 2021

a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)

Áp dụng t/c dãy tỏ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)

16 tháng 10 2021

b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{0,3}=\dfrac{y}{0.2}=\dfrac{z}{0.1}=\dfrac{x-y}{0.3-0.2}=\dfrac{1}{0.1}=10\)

Do đó: x=3; y=2; z=1

 

23 tháng 8 2021

7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)

Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)

\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)

 

23 tháng 8 2021

4) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)

\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)

\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)

\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)

6) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)

\(\dfrac{x+11}{13}=1\Rightarrow x=2\)

\(\dfrac{y+12}{13}=1\Rightarrow y=1\)

\(\dfrac{z+13}{15}=1\Rightarrow z=2\)

7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)

\(\Rightarrow x=4k,y=5k\)

\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)

\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)

Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)

24 tháng 8 2018

1/

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x-y}{5-6}=\dfrac{36}{-1}=-36\)

\(\Rightarrow\left\{{}\begin{matrix}x=-36\cdot5=-180\\y=-36\cdot6=-216\\z=-36\cdot4=-144\end{matrix}\right.\)

2/

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{y+z}{3+4}=\dfrac{28}{7}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=4\cdot3=12\\z=4\cdot4=16\end{matrix}\right.\)

3/

\(\dfrac{x}{1,2}=\dfrac{y}{1,3}\Leftrightarrow\dfrac{2x}{2,4}=\dfrac{y}{1,3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{2,4}=\dfrac{y}{1,3}=\dfrac{2x-y}{2,4-1,3}=\dfrac{5,5}{1,1}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5\cdot2,4}{2}=6\\y=5\cdot1,3=6,5\\z=5\cdot1,4=7\end{matrix}\right.\)

4/

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{x-y}{0,5-0,3}=\dfrac{1}{0,2}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot0,5=2,5\\y=5\cdot0,3=1,5\\z=5\cdot0,2=1\end{matrix}\right.\)

5/

\(z=\dfrac{x}{0,3}\Leftrightarrow z=\dfrac{3x}{0,9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(z=\dfrac{3x}{0,9}=\dfrac{z-3x}{1-0,9}=\dfrac{1}{0,1}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10\cdot0,9}{3}=3\\y=10\cdot0,7=7\\z=10\end{matrix}\right.\)

26 tháng 8 2018

cảm ơn bạn nha :>

26 tháng 8 2018

\(\frac{x}{0,3}=\frac{y}{0,7}=z=\frac{3x}{0,9}\)\(=\frac{z-3x}{1-0,9}=\frac{1}{0,1}=10\)( tính chất dãy tỉ số bằng nhau )

\(=>\hept{\begin{cases}x=0,3.10=3\\y=0,7.10=7\\z=10\end{cases}}\)

Vậy x = 3; y = 7; z = 1

31 tháng 7 2019

không phải 2 mà là z sorry ghi nhầm :|

31 tháng 8 2021

\(\dfrac{x}{0,3}=\dfrac{y}{0,2}=2z=\dfrac{3x}{0,9}=\dfrac{z}{\dfrac{1}{2}}=\dfrac{z-3x}{\dfrac{1}{2}-0,9}=\dfrac{1}{-\dfrac{2}{5}}=-\dfrac{5}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{5.0,3}{2}=-\dfrac{3}{4}\\y=-\dfrac{5.0,2}{2}=-\dfrac{1}{2}\\z=-\dfrac{5}{2.2}=-\dfrac{5}{4}\end{matrix}\right.\)

Ta có: \(\dfrac{x}{0.3}=\dfrac{y}{0.2}=\dfrac{2z}{1}\)

nên \(\dfrac{3x}{0.9}=\dfrac{y}{0.2}=\dfrac{z}{0.5}\)

mà z-3x=1

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Δ\(\dfrac{3x}{0.9}=\dfrac{y}{0.2}=\dfrac{z}{0.5}=\dfrac{z-3x}{0.5-0.9}=\dfrac{1}{0.4}=\dfrac{5}{2}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\cdot\dfrac{3}{10}=\dfrac{3}{4}\\y=\dfrac{5}{2}\cdot\dfrac{1}{5}=\dfrac{1}{2}\\z=\dfrac{5}{2}:2=\dfrac{5}{4}\end{matrix}\right.\)

4 tháng 8 2021

Áp dụng tính chất của dãy tỉ số bằng nhau:

`x/(0,3)=y/(0,2)=(2z)/1=(z-3x)/(1/2 - 3.0,3) = 1/(-0,4)=-5/2`

`=>x=-5/2 . 0,3 =-3/4`

`y=-5/2 .0,2=-1/2`

`z= -5/2 : 2 =-5/4`

24 tháng 7 2019

#)Giải :

1)Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y+4z}{6-2+12}=\frac{16}{16}=1\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{1}=1\\\frac{z}{3}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\\z=3\end{cases}}}\)

Vậy x = 2; y = 1; z = 3

2)Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=\frac{-24}{-4}=6\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=6\\\frac{y}{6}=6\\\frac{z}{3}=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=36\\z=18\end{cases}}}\)

Vậy x = 6; y = 36; z = 18

3)Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{x}{0,5}=\frac{y}{0,3}=\frac{x-y}{0,5-0,3}=\frac{1}{0,2}=5\Leftrightarrow\hept{\begin{cases}\frac{x}{0,5}=5\\\frac{y}{0,3}=5\\\frac{z}{0,2}=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2,5\\y=1,5\\z=1\end{cases}}}\)

Vậy x = 2,5; y = 1,5; z = 1