\(x^2-x-xy+3y-8=0\) Giải PT nghiệm nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiVõ Đông Anh Tuấn

4 tháng 9 2017

Ta có : \(x^2-x-xy+3y=8\)

<=> \(\left(x^2-xy+2x\right)-\left(3x-3y+6\right)=2\)

<=> \(\left(x-3\right)\left(x-y+2\right)=2\)

đến đây ngon rồi ... tự xử nhá :)

18 tháng 1 2019

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

\Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

\Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

18 tháng 1 2019

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3

17 tháng 3 2018

  2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0 

<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0 

<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8 

<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8 

<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8 

<=> 4(x + y + 4)( - 4x - 2y - 2) = 8 

<=> (x + y + 4)( 2x + y + 1) = -1 

=> 
{x + y + 4 = -1 
{2x + y + 1 = 1 
=> x = 2 và y = - 4 

{x + y + 4 = 1 
{2x + y + 1 = - 1 
=> x = - 2 và y = 2 

vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)

10, \(5x^3+11y^3=-13z^3\)

\(\Rightarrow5x^3+11y^3⋮13\)

\(\Rightarrow x,y⋮13\)

\(\Rightarrow z⋮13\)

Đến đây dùng lùi vô hạn nhé

6 tháng 2 2020

4. Nếu em đã tìm hiểu về giai thừa thì ở bài 4, chúng ta có thêm điều kiện: x, y, z là số tự nhiên và x,y < z

+) TH1: x = 0; y = 0 => z = 2 (tm)

+) TH2: x = 0; y = 1=> z = 2(tm)

+) Th3: x= 1; y = 0 => z = 2(tm)

+) TH4: x = 1; y= 1 => z = 2 (tm)

+) TH5: y > 1 

với \(x\le y\)

Khi đó: x! = 1.2.3...x; 

            y! = 1.2.3...x.(x+1)...y

            z! = 1.2.3....x.(x+1)...y(y+1)...z

Từ (4) <=> 1 + (x+1).(x+2)...y = (x + 1)....y(y+1)...z

<=> ( x+1)(x+2)...y[(y+1)...z - 1 ] = 1

<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)...y=1\\\left(y+1\right)...z-1=1\end{cases}}\)vô lí vì y > 1

Với \(y\le x\)cũng làm tương tự và loại'

Vậy:...