K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

\(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

\(ĐKXĐ:x\ge1\)

\(\Leftrightarrow x\left(x-1\right)-4=-2\sqrt{x-1}^3\)

Đặt \(\sqrt{x-1}=a\Rightarrow x=a^2+1\)

\(\Leftrightarrow\left(a^2+1\right)a^2-4=-2a^3\)

\(\Leftrightarrow a^4+2a^3+a^2-4=0\)

\(\Leftrightarrow a^4-a^3+3a^3-3a^2+4a^2-4=0\)(Lm tiếp nha bn.N0 = 1 đó)

c) Ta có: \(C=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{x-4}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

d)

Sửa đề: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)

Ta có: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)

\(=\dfrac{8+x\left(1+\sqrt{x}-1\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x\sqrt{x}+8}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}+4+x-2\sqrt{x}}{2\left(x-4\right)}\)

\(=\dfrac{x+4}{2x-8}\)

20 tháng 5 2019

#)Hỏi j đi bn, bn ph hỏi cái j chứ làm lun rùi còn để cộng đồng ngắm ak ???

20 tháng 5 2019

Bó cả tay lẫn chân !!! Bất lực như gặp cực hình !

27 tháng 4 2020

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

25 tháng 4 2020

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!

25 tháng 8 2021

a)√x−1=2(x≥1)
\(x-1=4 \)
x=5
b)
\(\sqrt{3-x}=4\)
 (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19





 

a: Ta có: \(\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

hay x=5

b: Ta có: \(\sqrt{3-x}=4\)

\(\Leftrightarrow3-x=16\)

hay x=-13

c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)

\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)

\(\Leftrightarrow-2x=-\dfrac{47}{16}\)

hay \(x=\dfrac{47}{32}\)

d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)

\(\Leftrightarrow x-1=\dfrac{49}{4}\)

hay \(x=\dfrac{53}{4}\)

e: Ta có: \(\sqrt{x-1}-3=1\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

hay x=17

f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)

\(\Leftrightarrow x+2=\dfrac{1}{64}\)

hay \(x=-\dfrac{127}{64}\)

19 tháng 8 2018

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}+1\right)}\)

\(=\dfrac{\left[\left(\sqrt{x^2+4}\right)^2-2^2\right]\left(x+\sqrt{x}+1\right)\left(\sqrt{\left(\sqrt{x}-1\right)}\right)^2}{x\left(x\sqrt{x}+1\right)}\)

\(=\dfrac{\left[\left(x^2+4\right)-4\right]\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x\left(x\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x^2+4-4\right)\left(\sqrt{x}^3-1\right)}{x\left(\sqrt{x}^3+1\right)}\)

\(=\dfrac{x^2\left(\sqrt{x}^3-1\right)}{x\left(\sqrt{x}^3+1\right)}\)

\(=\dfrac{x\left(\sqrt{x}^3-1\right)}{\sqrt{x}^3+1}\)

1:

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)

=>x-3=0 hoặc \(\sqrt{x+3}=2\)

=>x=3 hoặc x+3=4

=>x=1(loại) hoặc x=3(nhận)

2:

\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)

=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)

=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)

=>4(12x^2-16x+3x-4)=(7x-6)^2

=>49x^2-84x+36=48x^2-52x-16

=>-84x+36=-52x-16

=>-32x=-52

=>x=13/8

3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)

=>|x-5|=5-x

=>x-5<=0

=>x<=5

4: \(\Leftrightarrow\left|x-4\right|=x+2\)

=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)

=>x>=-2 và -8x+16=4x+4

=>x=1

a) Ta có: \(B=\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)-\left(\sqrt{x}-3\right)^2+\left(2\sqrt{x}+1\right)^2\)

\(=x+4\sqrt{x}-\sqrt{x}-4-\left(x-6\sqrt{x}+9\right)+\left(4x+4\sqrt{x}+1\right)\)

\(=x+3\sqrt{x}-4-x+6\sqrt{x}-9+4x+4\sqrt{x}+1\)

\(=4x+13\sqrt{x}-12\)

b) Ta có: \(C=\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+\frac{x-4}{x-2}-\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+\frac{x-4}{x-2}-\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\)

\(=\sqrt{x}+1+\frac{x-4}{x-2}-\left(\sqrt{x}+1\right)\)

\(=\frac{x-4}{x-2}\)