Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
a, \(x^3-2x=0\Leftrightarrow x\left(x^2-2\right)=0\Leftrightarrow x=;x=\pm\sqrt{2}\)
b, \(x^2\left(x-3\right)+12-4x=0\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\Leftrightarrow x=\pm2;x=3\)
c, \(\left(x-2\right)^2=x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-x^2-2x-4\right)=0\Leftrightarrow\left(x-2\right)\left(-x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+6>0\right)=0\Leftrightarrow x=2\)
d, \(x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Leftrightarrow x=2;x=3\)
e, \(x^3-4x^2+2x-1=0\Leftrightarrow x=3,5...\)
\(a,x^2-4x+1=0.\)
\(\text{Áp dụng biệt thức }\Delta=b^2-4ac\text{, ta có:}\)(Lớp 9 kì 2 hok)
\(\Delta=-4^2-4.1.1=16-4=12\)
\(\Rightarrow\text{pt có 2 nghiệm }\orbr{\begin{cases}x_1=\frac{4-\sqrt{12}}{2}=2-\sqrt{3}\\x_2=\frac{4+\sqrt{12}}{2}=2+\sqrt{3}\end{cases}}\)
b,bn xem lại đề nếu đúng nói mk 1 tiếng mk làm tiếp cho
Ví dụ cho bạn một bài, còn lại tương tự.
a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)
\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)
Vậy phương trình vô nghiệm.
b, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = m
m2 + 3x.m + 2x2 = 0
\(\Leftrightarrow\) m2 + xm + 2x.m + 2x2 = 0
\(\Leftrightarrow\) (m2 + xm) + (2xm + 2x2) = 0
\(\Leftrightarrow\) m(m + x) + 2x(m + x) = 0
\(\Leftrightarrow\) (m + x)(m + 2x) = 0
Thay m = x2 + 4x + 8
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)(x2 + 6x + 8) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)][(x + 3)2 - 1] = 0
Vì (x + \(\frac{5}{2}\))2 \(\ge\) 0 với mọi x nên (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\) (x + 3)2 - 1 = 0
\(\Leftrightarrow\) (x + 3 - 1)(x + 3 + 1) = 0
\(\Leftrightarrow\) (x + 2)(x + 4) = 0
\(\Leftrightarrow\) x + 2 = 0 hoặc x + 4 = 0
\(\Leftrightarrow\) x = -2 và x = -4
Vậy S = {-2; -4}
Chúc bn học tốt!! (Xong 2 câu r, bn có thể tham khảo, câu trước mk đăng r)
a, 2x4 - 3x3 - 4x2 + 3x + 2 = 0
\(\Leftrightarrow\) 2x4 - 5x3 + 2x3 - 5x2 + x2 + 2x + x + 2 = 0
\(\Leftrightarrow\) (2x4 + 2x3) - (5x3 + 5x2) + (2x + 2) + (x2 + x) = 0
\(\Leftrightarrow\) 2x3(x + 1) - 5x(x + 1) + 2(x + 1) + x(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(2x3 - 5x + 2 + x) = 0
\(\Leftrightarrow\) (x + 1)(2x3 - 4x + 2) = 0
\(\Leftrightarrow\) 2(x + 1)(x3 - 2x + 1) = 0
\(\Leftrightarrow\) (x + 1)(x3 - 2x + 1 + x2 - x2) = 0
\(\Leftrightarrow\) (x + 1)[(x2 - 2x + 1) + (x3 - x2)] = 0
\(\Leftrightarrow\) (x + 1)[(x - 1)2 + x2(x - 1)] = 0
\(\Leftrightarrow\) (x + 1)(x - 1)(x2 + 1) = 0
Vì x2 \(\ge\) 0 với mọi x nên x2 + 1 > 0 với mọi x
\(\Rightarrow\) x + 1 = 0 hoặc x - 1 = 0
\(\Leftrightarrow\) x = -1 và x = 1
Vậy S = {-1; 1}
Câu b để mk suy nghĩ tiếp :))
Chúc bn học tốt!!
Bài 1 :
1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )
3) 4x2 + y2 + 4xy = ( 2x + y )2
Bài 2:
1) 2x2 + 8x = 0
=> 2x ( x + 4 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
2) 3 ( x - 4 ) + x2 - 4x = 0
=> 3 ( x - 4 ) + x ( x - 4 ) = 0
=> ( x - 4 ) ( 3 + x ) = 0
=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
3) 3 ( x - 2 ) = x2 - 2x
=> 3 ( x - 2 ) - x2 + 2x = 0
=> 3 ( x - 2 ) - x ( x - 2 ) = 0
=> ( x - 2 ) ( 3 - x ) = 0
=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
4) x ( x - 2 ) - 6 ( 2 - x ) = 0
=> x ( x - 2 ) + 6 ( x - 2 ) = 0
=> ( x - 2 ) ( x + 6 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
5) 2x ( x + 5 ) = x2 + 5x
=> 2x ( x + 5 ) - x2 - 5x = 0
=> 2x ( x + 5 ) - x ( x + 5 ) = 0
=> ( x + 5 ) ( 2x - x ) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
6 ) ( x - 2 )2 - x ( x + 3 ) = 9
=> x2 - 4x + 4 - x2 - 3x = 9
=> - 7x + 4 = 9
=> - 7x = 5
=> x = \(-\frac{5}{7}\)
\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)
\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)
\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(2,3\left(x-4\right)+x^2-4x=0\)
\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(3,3\left(x-2\right)=x^2-2x\)
\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)
\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)
\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
\(4,x\left(x-2\right)-6\left(2-x\right)=0\)
\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)
\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)
phiền bạn có thể giải thik kĩ cho mik đc ko ạ ghi z mik ko hiểu luôn nếu ko đc thì thôi xl vì lm phiền bạn và cảm ơn nhe