K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

28 tháng 4 2020

Hướng dẫn:

\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)

TH1:  m - 2 = 0 <=> m = 2 

khi đó phương trình trở thành: \(-3x^2+4=0\)

<=> \(x=\pm\frac{2}{\sqrt{3}}\)

TH2: m khác 2

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)

có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)

+) Phương trình (1)  vô nghiệm <=> phương trình (2) vô nghiệm 

<=> \(\Delta\)<0  ( tự giải ra) 

+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không ) 

+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương

Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)

<=> m = - 2 

Thay vào phương trình (2) : \(-4t^2-3.t=0\)

<=> \(t\left(4t+3\right)=0\)

<=> t = 0 

=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm 

+) Phương trình (1) có 2 nghiệm  <=>phuowng trình (2) có 2 nghiệm trái dấu 

<=> m + 2 < 0 <=> m < - 2 

Kết hợp với TH1 nữa nhé!

+)  Phương trình (1) có 4 nghiệm 

<=> phương trình 2 có 2 nghiệm dương 

<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)

18 tháng 2 2019

a, Pt có nghiệm \(x=\sqrt{2}\) tức là

\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)

\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)

\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)

\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)

b, *Với m = 4 thì pt trở thành

\(\left(4-4\right)x^2-2.4.x+4-2=0\)

\(\Leftrightarrow-8x+2=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Pt này ko có nghiệm kép

*Với \(m\ne4\)thì pt đã cho là pt bậc 2

Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)

Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)

                     

                           \(\Leftrightarrow m=\frac{4}{3}\)

Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)

Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)

c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)

                                             \(\Leftrightarrow-6m+8>0\)

                                             \(\Leftrightarrow m< \frac{4}{3}\)

4 tháng 4 2016

giúp mk vs

4 tháng 4 2016

a) để pt có nghiệm <=> đen ta phẩy >= 0

                            <=> (-(m-1)) - 1(-3m+m2) >= 0

                            <=> (m-1)2 +3m-m2  >= 0

                            <=> m2-2m+1+3m-m2  >= 0

                            <=> m+1 >= 0

                            <=> m >= -1

vậy khi m >= -1 thì pt có nghiệm

b)   khi m >= -1 thì pt có nghiệm ( theo a)

 theo vi-ét ta có: x1+x2 = 2(m-1)       (1)

                         x1.x= -3m + m2   (2)

theo đầu bài ta có: x12 + x22=16

                    <=> x12+ 2x1x2+ x22 -2x1x2= 16

                    <=> (x1+x2)-2x1x2 = 16    (3)

thay (1) và (2) và (3) rồi tính m.

kết quả: khi m=3 thì pt có nghiệm thỏa mãn đk đó.

                    

   

27 tháng 7 2017

đặt x^2 = y => y > = 0
phương trình đc viết lại : y^2 + 2my + m+ 12 = 0    (2)

để pt có 1 nghiệm thì pt 2 phải có 1 nghiệm = 0 và 1 nghiệm nhỏ hơn hoặc bằng 0

để pt có 2 nghiệm => pt (2) có 2 nghiệm trái dấu hoặc có nghiệm kép dương

để pt có 3 nghiệm => pt(2) có 1 nghiệm dương và 1 nghiệm bằng 0

để pt có 4 nghiệm => pt 2 phải có 2 nghiệm dương phân biệt