Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Ở trên có đoạn mình đánh lộn \(\Delta'\) ra \(\Delta\) nhé
Hướng dẫn:
\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)
TH1: m - 2 = 0 <=> m = 2
khi đó phương trình trở thành: \(-3x^2+4=0\)
<=> \(x=\pm\frac{2}{\sqrt{3}}\)
TH2: m khác 2
Đặt: \(x^2=t\ge0\)
Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)
có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)
+) Phương trình (1) vô nghiệm <=> phương trình (2) vô nghiệm
<=> \(\Delta\)<0 ( tự giải ra)
+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không )
+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương
Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)
<=> m = - 2
Thay vào phương trình (2) : \(-4t^2-3.t=0\)
<=> \(t\left(4t+3\right)=0\)
<=> t = 0
=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm
+) Phương trình (1) có 2 nghiệm <=>phuowng trình (2) có 2 nghiệm trái dấu
<=> m + 2 < 0 <=> m < - 2
Kết hợp với TH1 nữa nhé!
+) Phương trình (1) có 4 nghiệm
<=> phương trình 2 có 2 nghiệm dương
<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)
a, Pt có nghiệm \(x=\sqrt{2}\) tức là
\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)
\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)
b, *Với m = 4 thì pt trở thành
\(\left(4-4\right)x^2-2.4.x+4-2=0\)
\(\Leftrightarrow-8x+2=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Pt này ko có nghiệm kép
*Với \(m\ne4\)thì pt đã cho là pt bậc 2
Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)
Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)
Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)
c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow-6m+8>0\)
\(\Leftrightarrow m< \frac{4}{3}\)
a) để pt có nghiệm <=> đen ta phẩy >= 0
<=> (-(m-1))2 - 1(-3m+m2) >= 0
<=> (m-1)2 +3m-m2 >= 0
<=> m2-2m+1+3m-m2 >= 0
<=> m+1 >= 0
<=> m >= -1
vậy khi m >= -1 thì pt có nghiệm
b) khi m >= -1 thì pt có nghiệm ( theo a)
theo vi-ét ta có: x1+x2 = 2(m-1) (1)
x1.x2 = -3m + m2 (2)
theo đầu bài ta có: x12 + x22=16
<=> x12+ 2x1x2+ x22 -2x1x2= 16
<=> (x1+x2)2 -2x1x2 = 16 (3)
thay (1) và (2) và (3) rồi tính m.
kết quả: khi m=3 thì pt có nghiệm thỏa mãn đk đó.
đặt x^2 = y => y > = 0
phương trình đc viết lại : y^2 + 2my + m+ 12 = 0 (2)
để pt có 1 nghiệm thì pt 2 phải có 1 nghiệm = 0 và 1 nghiệm nhỏ hơn hoặc bằng 0
để pt có 2 nghiệm => pt (2) có 2 nghiệm trái dấu hoặc có nghiệm kép dương
để pt có 3 nghiệm => pt(2) có 1 nghiệm dương và 1 nghiệm bằng 0
để pt có 4 nghiệm => pt 2 phải có 2 nghiệm dương phân biệt