Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+m+5\)
\(\Delta'=m^2-2m+1-m^2+m+5\)
\(\Delta'=-m+6\)
để pt (1) có 2 nghiệm \(x_1;x_2\) \(\Leftrightarrow-m+6>0\)
\(\Leftrightarrow m< 6\)
theo định lí \(Vi-et\) \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m^2-m-5\end{cases}}\)
theo bài ra \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}+\frac{10}{3}=0\) ( \(x_1.x_2\ne0\Leftrightarrow m^2-m-5\ne0\))
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{-10}{3}\)
\(\Leftrightarrow\frac{\left(2m-2\right)^2-2.\left(m^2-m-5\right)}{m^2-m-5}=-\frac{10}{3}\)
\(\Leftrightarrow\frac{4m^2-8m+4-2m^2+2m+10}{m^2-m-5}=\frac{-10}{3}\)
\(\Leftrightarrow\left(2m^2-6m+14\right).3=-10.\left(m^2-m-5\right)\)
\(\Leftrightarrow6.\left(m^2-3m+7\right)=-10.\left(m^2-m-5\right)\)
\(\Leftrightarrow-3m^2+9m-21=5m^2-5m-25\)
\(\Leftrightarrow-3m^2+9m-21-5m^2+5m+25=0\)
\(\Leftrightarrow-8m^2+14m+4=0\)
\(\Leftrightarrow4m^2-7m-2=0\) \(\left(2\right)\)
từ PT (2) có \(\Delta=\left(-7\right)^2-4.4.\left(-2\right)=49+32=81>0\Rightarrow\sqrt{\Delta}=9\)
vì \(\Delta>0\) nên PT có 2 nghiệm phân biệt
\(m_1=\frac{7-9}{8}=\frac{-1}{4}\) ( TM ĐK
\(m_2=\frac{7+9}{8}=2\) \(m< 6\)và \(m^2-m-5\ne0\))
Bài này bạn áp dụng vi-ét là ra ngay nha !
Chúc bạn học tốt !
\(\text{Δ}=\left[-\left(m+1\right)\right]^2-4\cdot1\cdot m\)
\(=\left(m+1\right)^2-4m\)
\(=\left(m-1\right)^2>=0\forall m\)
=>Phương trình luôn có hai nghiệm
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=x_1x_2-2\left(x_1+x_2\right)+6\)
=>\(\left(m+1\right)^2-2m=m-2\left(m+1\right)+6\)
=>\(m^2+1=m-2m-2+6\)
=>\(m^2+1=-m+4\)
=>\(m^2+m-3=0\)
=>\(m=\dfrac{-1\pm\sqrt{13}}{2}\)
|x1|=3|x2|
=>|2m+2-x2|=|3x2|
=>4x2=2m+2 hoặc -2x2=2m+2
=>x2=1/2m+1/2 hoặc x2=-m-1
Th1: x2=1/2m+1/2
=>x1=2m+2-1/2m-1/2=3/2m+3/2
x1*x2=m^2+2m
=>1/2(m+1)*3/2(m+1)=m^2+2m
=>3/4m^2+3/2m+3/4-m^2-2m=0
=>m=1 hoặc m=-3
TH2: x2=-m-1 và x1=2m+2+m+1=3m+3
x1x2=m^2+2m
=>-3m^2-6m-3-m^2-2m=0
=>m=-1/2; m=-3/2
Ta có :
\(\Delta=b^2-4.a.c\)
\(\Delta=[-\left(5-m\right)]^2-4.1.\left(4m+4\right)\)
\(\Delta=25-10m+m^2-4.\left(4m+4\right)\)
\(\Delta=25-10m+m^2-16m-16\)
\(\Delta=m^2-26m+9\)
\(\Delta=\left(m-13\right)^2-160\) > 0 \(\forall m\) \(\in R\)
Theo ht vi - ét , ta có :
\(x_1+x_2=\) \(5+m\)
\(x_1.x_2=4m+4\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{12}\)
⇔ \(x_1+x_2=\dfrac{7}{12}\)
⇔ \(5+m=\dfrac{7}{12}\)
⇔ \(m=-\dfrac{53}{12}\)
Vậy m = \(-\dfrac{53}{12}\)
( không chắc đáp án đâu nhé )