Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2/7 : x = 11/6 : 7/12
2/7 : x = 22/7
x = 2/7 : 22/7
x = 1/11
b) (2 - x)/3 = -3/(x - 2)
(2 - x)(x - 2) = -3.3
-(x - 2)² = -9
(x - 2)² = 9
x - 2 = 3 hoặc x - 2 = -3
*) x - 2 = 3
x = 3 + 2
x = 5
*) x - 2 = -3
x = -3 + 2
x = -1
Vậy x = -1; x = 5
c) (x - 1)/(x + 2) = 2/3
3(x - 1) = 2(x + 2)
3x - 3 = 2x + 4
3x - 2x = 4 + 3
x = 7
a) 2/7 : x = 11/6 : 7/12
2/7 : x = 22/7
x = 2/7 : 22/7
x = 1/11
b) (2 - x)/3 = -3/(x - 2)
(2 - x)(x - 2) = -3.3
-(x - 2)² = -9
(x - 2)² = 9
x - 2 = 3 hoặc x - 2 = -3
*) x - 2 = 3
x = 3 + 2
x = 5
*) x - 2 = -3
x = -3 + 2
x = -1
Vậy x = -1; x = 5
c) (x - 1)/(x + 2) = 2/3
3(x - 1) = 2(x + 2)
3x - 3 = 2x + 4
3x - 2x = 4 + 3
x = 7
Bài 1:
a) \(=\dfrac{8}{15}\left(\dfrac{7}{13}+\dfrac{6}{13}\right)=\dfrac{8}{15}.1=\dfrac{8}{15}\)
b) \(=\dfrac{3.3-7-2.4}{12}=-\dfrac{6}{12}=-\dfrac{1}{2}\)
Bài 2:
\(\dfrac{x}{2,7}=-\dfrac{2}{3,6}\Rightarrow x=\dfrac{\left(-2\right).2,7}{3,6}\Rightarrow x=-\dfrac{3}{2}\)
Bài 3:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=-\dfrac{21}{7}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).5=-10\end{matrix}\right.\)
3-2 . 34 . 3x = 37
<=> 32 + x = 37
<=> 2 + x = 7
<=> x = 7 - 2
<=> x = 5
\(2^{-2}\cdot2^x+2\cdot2^x=9\cdot2^6\\ \Rightarrow2^{x-2}+2^{x+1}=9\cdot2^6\\ \Rightarrow2^{x-2}\left(1+2^3\right)=9\cdot2^6\\ \Rightarrow2^{x-2}\cdot9=9\cdot2^6\Rightarrow2^{x-2}=2^6\\ \Rightarrow x-2=6\Rightarrow x=8\)
\(3^{-2}\cdot3^4\cdot3^x=3^7\\ \Rightarrow3^{x+4-2}=3^7\\ \Rightarrow x+2=7\Rightarrow x=5\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)
=>\(\left|2x+1\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
c: (2x-3)2=36
=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
d: \(7^{x+2}+2\cdot7^x=357\)
=>\(7^x\cdot49+7^x\cdot2=357\)
=>\(7^x=7\)
=>x=1
a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
\(---\)
b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)
\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)
\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)
\(---\)
c) \(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(---\)
d) \(7^{x+2}+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)
\(\Rightarrow7^x\cdot\left(49+2\right)=357\)
\(\Rightarrow7^x\cdot51=357\)
\(\Rightarrow7^x=357:51\)
\(\Rightarrow7^x=7\)
\(\Rightarrow x=1\)
Theo đề bài ta có \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\)
\(\begin{array}{l}M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\\ \Rightarrow Q(x) = (6{x^5} - {x^4} + 3{x^2} - 2) - (2{x^4} - 5{x^3} + 7{x^2} + 3x)\\ \Rightarrow Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2 - 2{x^4} + 5{x^3} - 7{x^2} - 3x\\Q(x) = 6{x^5} - 3{x^4} + 5{x^3} - 4{x^2} - 3x - 2\end{array}\)
Theo đề bài ta có :
\(\begin{array}{l}N(x) - M(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7\\ \Rightarrow N(x) = - 4{x^4} - 2{x^3} + 6{x^2} + 7 + 2{x^4} - 5{x^3} + 7{x^2} + 3x\\ \Rightarrow N(x) = - 2{x^4} - 7{x^3} + 13{x^2} + 3x + 7\end{array}\)
Tìm x biết:
5. ( x-1 ) - 7.( x-2 ) = 2x -39
Tìm x thuộc Z biết:
x - 3 - 14.( x-2 )= -3x -3
\(3x+7⋮x-2\)
5 ( x - 1 ) - 7 ( x - 2 ) = 2x - 39
<=> 5x - 5 - 7x + 14 = 2x - 39
<=> 5x - 7x - 2x = -39 + 5 - 14
<=> -4x = -48
<=> x = 12
x - 3 - 14.( x-2 )= -3x -3\(\Rightarrow\chi-3-28-14\chi-28=-3\chi-3\)
\(\Rightarrow\chi-3-28+3=-3\chi-3\)
\(\Rightarrow\chi-28=11\chi\)
\(\Rightarrow\chi-11\chi=28\)
\(\Rightarrow10\chi=28\Rightarrow\chi=2,8\left(kot.m\chi\inℤ\right)\)
cứu mình đi mình sắp kiểm tra rồi