\(x^2-6y^2=1\)

Tìm các số nguyên tố x,y thoả mãn bài toán

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

x2-6y=1<=>x2=1+6y 

Vì 6y+1 là số lẻ nên =>x có dạng 2k+1=>x2=(2k+1)2

Ta có (2k+1)^2=1+6y

<=>4k2+4k+1=1+6y

<=>4(k^2+k)=6y

<=>2(k^2+k)=3y

<=>y là số chẵn .mà y là số nguyên tố => y =2 

Thay y=2 vào rồi tìm x .....

16 tháng 5 2020

Bg

Ta có \(x^2-6y^2=1\)(\(x,y\inℤ\); x,y là các số nguyên tố)

=> 6y2 + 1 = x2 

=> x2 - 1 = 6y2

Xét 6y2 + 1 = x2 

Vì 6y2 luôn chẵn nên 6y2 + 1 lẻ

Suy ra x2 lẻ --> x lẻ

Xét x2 - 1 = 6y2:

=> x2 - 12 = 6y2  *x2 - 12 = x2 + x - x - 1 = (x2 + x) - (x + 1) = x(x + 1) - 1(x + 1) = (x - 1)(x + 1)

=> (x - 1)(x + 1) = 6y2 

Vì x lẻ nên x - 1 chẵn và x + 1 chẵn --> x - 1 và x + 1 là hai số chẵn liên tiếp

Mà 2 số chẵn liên tiếp luôn chia hết cho 8.

=> 6y2 \(⋮\)8

Vì 6 không chia hết cho 8 và ƯCLN (6; 8) = 2

Nên y \(\in\)B (2) --> y chẵn hay y \(⋮\)2

Mà y là số nguyên tố nên y = 2

Thay vào:

x2 - 6.22 = 1

x2 - 24   = 1

x2          = 1 + 24

x2          = 25

x2          = 52

x            = 5 (thỏa mãn)

Vậy x = 5 và y = 2 

19 tháng 3 2020

z đâu bn

19 tháng 3 2020

mình ghi thừa đó

19 tháng 3 2020

TA CÓ \(x^2-12y^2=1\)

\(\Leftrightarrow x^2=12y^2\)

\(\Leftrightarrow x=12y\)

\(\Leftrightarrow\frac{y}{1}=\frac{x}{12}\)

theo tính chất dãy tỉ số bằng nhau

\(\frac{y}{1}=\frac{x}{12}=\frac{y-x}{1-12}=\frac{1}{-11}=-\frac{1}{11}\)

tuwfddos tìm được x,y

       

         

           

19 tháng 3 2020

cảm ơn nhé

22 tháng 6 2018

Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự

Bài 2 : Ta có :

\(x^2-6y^2=1\)

\(\Rightarrow x^2-1=6y^2\)

\(\Rightarrow y^2=\frac{x^2-1}{6}\)

Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)

=> y2 là số chẵn

Mà y là số nguyên tố => y = 2

Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)

\(\Rightarrow x^2=25\Rightarrow x=5\)

Vậy x=5 ; y =2

3 tháng 3 2016

câu 1 : là 0

cau2: -13

3 tháng 3 2016

bài 1 ko có số tự nhiên nào thỏa mãn 

bài 2: y=-13

3 tháng 3 2020

Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)

Khi đó r > 3 nên r là số lẻ

=> p.q không cùng tính chẵn lẻ

Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)

Nếu q không chia hết cho 3 thì q^2 =1 (mod3)

Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)

Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)

Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố

Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17

22 tháng 11 2019

b. Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath

1 tháng 3 2020

a) \(x^2-5x+6=0\)

\(=>x^2-5x=-6\)

\(=>x\left(x-5\right)=-6\)

\(=>\orbr{\begin{cases}x=0\\x-5=0\end{cases}=>\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)

Vậy x = { 0 ; 5 }

1 tháng 3 2020

a) \(x^2-5x+6=0\)

=>\(x^2-5x+\frac{25}{4}-\frac{1}{4}=0\)

=>\(\left(x-\frac{5}{2}\right)^2=\frac{1}{4}\)

=>\(\orbr{\begin{cases}x-\frac{5}{2}=\frac{1}{2}\\x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\)

=>\(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)