Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=2;y=1
b) tương tự câu a
c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)
\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)
\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=2;y=1
1) \(4x^2-12x+y^2-4y+13\)
\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)
\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
2) \(x^2+y^2+2y-6x+10\)
\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)
\(=\left(x+1\right)^2+\left(y-3\right)^2\)
3) \(4x^2+9y^2-4x+6y+2\)
\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)
\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)
4) \(y^2+2y+5-12x+9x^2\)
\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)
\(=\left(y+1\right)^2+\left(3x-2\right)^2\)
5) \(x^2+26+6y+9y^2-10x\)
\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)
\(=\left(x-5\right)^2+\left(3y+1\right)^2\)
\(x^2+y^2-4x+6y+13=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^3=0\)
Vì: \(\left(x-2\right)^2+\left(y+3\right)^3\ge0\forall x;y\)
=> ''='' xảy ra khi x = 2; y = -3
Vậy.........
Lời giải:
\(x^2+y^2-4x+6y+13=0\)
\(\Leftrightarrow (x^2-4x+4)+(y^2+6y+9)=0\)
\(\Leftrightarrow (x-2)^2+(y+3)^2=0\)
Vì \((x-2)^2; (y+3)^2\ge 0, \forall x,y\Rightarrow (x-2)^2+(y+3)^2\geq 0\)
Dấu "=" xảy ra khi \((x-2)^2=(y+3)^2=0\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-3\end{matrix}\right.\)
a) \(A=9x^2-2x+15\)
\(A=9x^2-2x+\frac{1}{9}+\frac{134}{9}\)
\(A=\left(3x+\frac{1}{3}\right)^2+\frac{134}{9}\)
Có: \(\left(3x+\frac{1}{3}\right)^2\ge0\Rightarrow\left(3x+\frac{1}{3}\right)^2+\frac{134}{9}\ge\frac{134}{9}\)
Dấu '=' xảy ra khi: \(\left(3x+\frac{1}{3}\right)^2=0\Rightarrow3x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{9}\)
Vậy: \(Min_A=\frac{134}{9}\) tại \(x=-\frac{1}{9}\)
b) \(B=3x^2+x+1\)
\(B=3x^2+x+\frac{1}{12}+\frac{11}{12}\)
\(B=\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2+\frac{11}{12}\)
Có: \(\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2\ge0\Rightarrow\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu '=' xảy ra khi: \(\left(\sqrt{3}x+\sqrt{\frac{1}{12}}\right)^2=0\Rightarrow\sqrt{3}x+\sqrt{\frac{1}{12}}=0\Rightarrow x=-\frac{1}{6}\)
Vậy: \(Min_B=\frac{11}{12}\) tại \(x=-\frac{1}{6}\)
c) \(C=x^2-6y+4x+y^2+38\)
\(C=\left(x^2+4x+4\right)+\left(y^2-6y+9\right)+25\)
\(C=\left(x+2\right)^2+\left(y-3\right)^2+25\)
Có: \(\left(x+2\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+25\ge25\)
Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy: \(Min_C=25\) tại \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
\(\Leftrightarrow x^2-4x+4+y^2-6y+9+2=2\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Dấu '=' xảy ra khi x=2 và y=3
x2−4x+y2−6x+15=2x2−4x+y2−6x+15=2
⇔(x2−4x+4)+(y2−6x+9)−4−9+15−2=0⇔(x2−4x+4)+(y2−6x+9)−4−9+15−2=0
⇔(x−2)2+(y−3)2=0⇔(x−2)2+(y−3)2=0
Lại có :
{(x−2)2≥0(y−3)2≥0{(x−2)2≥0(y−3)2≥0 ∀x,y∀x,y
Dấu "=" xảy ra ⇔x=2;y=3