Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1. Giải các phương trình sau bằng công thức nghiệm hoặc (công thức nghiện thu gọn).
1) x2 - 11x + 38 = 0 ;
2) 6x2 + 71x + 175 = 0 ;
3) 5x2 - 6x + 27 =0 ;
4) - 30x2 + 30x - 7,5 = 0 ;
5) 4x2 - 16x + 17 = 0 ;
6) x2 + 4x - 12 = 0 ;
\(\Delta=121-4\left(2m-4\right)=137-8m\ge0\Rightarrow m\le\frac{137}{8}\)
Kết hợp Viet và đề bài ta có hệ:
\(\left\{{}\begin{matrix}x_1+x_2=11\\2x_1-x_2=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=11\\3x_1=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=8\end{matrix}\right.\)
Mà \(x_1x_2=2m-4\)
\(\Rightarrow2m-4=24\Rightarrow m=14\) (thỏa mãn)
a) Ta có: \(x^2-11x-26=0\)
nên a=1; b=-11; c=-26
Áp dụng hệ thức Viet, ta được:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)
và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)
Phương trình 2 x 2 − 11x + 3 = 0 3 = 97 > 0 nên phương trình có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 11 2 x 1 . x 2 = 3 2
Ta có
A = x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 1 + x 2 ) = 11 2 2 − 2. 3 2 = 109 4
Đáp án: A
6x^5 - 11x^4 - 11x + 6 = 0
\(\Leftrightarrow6x^5+6x^4-17x^4-17x^3+17x^2-17x+6x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(6x^4-17x^3+17x^2-17x+6\right)=0\)
- Có 1 nghiệm là x=-1
- Xét \(x\ne0\),ta có pt bậc 4 đối xứng:
\(6x^4+6-17\left(x^3+x\right)+17x^2=0\) vì x = 0 ko là nghiệm, chia cho x2 ta có:
\(6\left(x^2+\frac{1}{x^2}\right)-17\left(x+\frac{1}{x}\right)+17=0\)
Đặt t=\(x+\frac{1}{x}\) ta có:
\(6\left(t^2-2\right)-17t+17=0\)
\(\Leftrightarrow\left(3t-1\right)\left(2t-5\right)=0\)
- Với 3t-1=0
\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-1=0\)
<=>vô nghiệm
- Với 2t-5=0
\(\Leftrightarrow2x+\frac{2}{x}-5=0\)
\(\Leftrightarrow\frac{2x^2-5x+2}{x}=0\)
\(\Leftrightarrow2x^2-5x+2=0\)
tới đây bạn có thể dùng denta,vi-ét hay phân tích nó thành nhân tử và nghiệm là:
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\left(tm\right)\)
Vậy tập nghiệm pt là \(S=\left\{-1;2;\frac{1}{2}\right\}\)