Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)
Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)
\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)
Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)
- Đặt \(f\left(x\right)=\dfrac{2x-3}{19+8x}\)
- Lập bảng xét dấu :
- Từ bảng xét dấu : - Để : \(f\left(x\right)< 0\)
\(\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)
Vậy ...
Ta có: \(\dfrac{2x-3}{8x+19}< 0\)
Trường hợp 1: \(\left\{{}\begin{matrix}2x-3>0\\8x+19< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Trường hợp 2: \(\left\{{}\begin{matrix}2x-3< 0\\8x+19>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>-\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)
Vậy: S={x|\(-\dfrac{19}{8}< x< \dfrac{3}{2}\)}
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
Th1
2x+3=x-4(x>=-3/2)
<=>x=-7(loại)
Th2
2x+3=4-x(x=<-3/2)
<=>3x=1
<=>x=1/3(loại)
Pt vô nghiệm
\(\left|2x+3\right|=x-4\left(x\ge4\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=x-4\\2x+3=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3-4\\3x=4-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(L\right)\\x=\dfrac{1}{3}\left(L\right)\end{matrix}\right.\)
Không có giá trị của x thỏa mãn.
\(a.\left(x^2-2x+1\right)-4=0\\\Leftrightarrow \left(x-1\right)^2-2^2=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;-1\right\}\)
\(b.x^2-x=-2x+2\\\Leftrightarrow x^2-x+2x-2=0\\\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\\\Leftrightarrow \left(x+2\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-2;1\right\}\)
\(c.4x^2+4x+1=x^2\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)-x^2=0\\ \Leftrightarrow4\left(x+\frac{1}{2}\right)^2-x^2=0\\ \Leftrightarrow\left[2\left(x+\frac{1}{2}\right)-x\right]\left[2\left(x-\frac{1}{2}\right)+x\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2\left(x+\frac{1}{2}\right)-x=0\\2\left(x+\frac{1}{2}\right)+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x+1-x=0\\2x+1+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-1;-\frac{1}{3}\right\}\)
\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)
Do \(\left(x^2+5\right)>0\)
\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)
Vậy...
a) 1,2x < -6
\(\Leftrightarrow1,2x.\dfrac{1}{1,2}< -6.\dfrac{1}{1,2}\)
\(\Leftrightarrow\) \(\dfrac{1,2x}{1,2}< \dfrac{-6}{1,2}\)
\(\Leftrightarrow x< -5\)
Vậy nghiệm của BPT là : \(x< -5\)
b) \(3x+4>2x+3\)
\(\Leftrightarrow3x-2x>-4+3\)
\(\Leftrightarrow x>-1\)
Vậy nghiệm của BPT là : \(x>-1\)
c) \(2x-3>0\)
\(\Leftrightarrow2x>3\)
\(\Leftrightarrow2x.\dfrac{1}{2}>3.\dfrac{1}{2}\)
\(\Leftrightarrow x>1,5\)
Vậy nghiệm của BPT là : \(x>1,5\)
d) \(4-3x\le2\)
\(\Leftrightarrow-3x\le2-4\)
\(\Leftrightarrow-3x\le-2\)
\(\Leftrightarrow-3x.\dfrac{-1}{3}\ge-2.\dfrac{-1}{3}\)
\(\Leftrightarrow x\ge\dfrac{2}{3}\)
Vậy tập nghiệm của BPT là : \(x\ge\dfrac{2}{3}\)
\(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3>0\forall x\in R\)
Vậy BPT có tập nghiệm là \(R\)