Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT có 2 nghiệm phân biệt
`<=>Delta'>0`
`<=>(m-1)^2-(m+1)>0`
`<=>m^2-2m+1-m-1>0`
`<=>m^2--3m>0`
`<=>m(m-3)>0`
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m-3>0\\\end{cases}\\\begin{cases}m<0\\m-3<0\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m>3\\\end{cases}\\\begin{cases}m<0\\m<3\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}m>3\\m<0\end{array} \right.$
Vậy m>3 or m<0 thì PT có 2 nghiệm phân biệt
Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$
$\Leftrightarrow m^2+10m-7>0(*)$
Áp dụng định lý Viet:
$x_1+x_2=\frac{m+1}{2}$
$x_1x_2=\frac{m-1}{2}$
Khi đó:
$x_1-x_2=x_1x_2$
$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)
Vậy......
\(x^2-2mx-3=0\left(1\right)\)
\(a=1;b=-2m;c=-3\)
Ta có a và c trái dấu nên ac<0 \(\Rightarrow\Delta>0\)
Do đó phuong trình (1) luôn có 2 nghiệm phân biệt với mọi m.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m\right)}{1}=2m\\x_1x_2=\dfrac{c}{a}=\dfrac{-3}{1}=-3\end{matrix}\right.\)
Ta có: \(\left(x_1-2x_2\right)^2+x_2-2mx_1=20\)
\(\Rightarrow x_1^2-4x_1x_2+4x_2^2+x_2-2mx_1=20\)
\(\Rightarrow x_1^2-4x_1x_2+4x_2^2+x_2-\left(x_1+x_2\right)x_1=20\)
\(\Rightarrow-5x_1x_2+4x_2^2+x_2=20\)
\(\Rightarrow-5.\left(-3\right)+4x_2^2+x_2=20\)
\(\Leftrightarrow4x_2^2+x_2-5=0\)
Giải phương trình trên ta được: \(\left[{}\begin{matrix}x_2=1\\x_2=-\dfrac{5}{4}\end{matrix}\right.\)
Với x2=1 là nghiệm của phương trình (1). Ta có:
\(1^2-2m.1-3=0\Rightarrow m=-1\)
Với x2=-5/4 là nghiệm của phương trình (1). Ta có:
\(\left(-\dfrac{5}{4}\right)^2-2m.\left(-\dfrac{5}{4}\right)-3=0\Rightarrow m=\dfrac{23}{40}\)
Vậy m=-1 hay m=23/40
Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)
Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)
\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)
\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)
\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)
\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)
Vậy m=1
Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)
Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)
\(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)
\(\Leftrightarrow...\)
Điều kiện:
\(\Delta=\left(m^2+1\right)^2-4\left(m^2-7m+12\right)>0\)
\(\Leftrightarrow m^4+2m^2+1-4m^2-28m+48>0\)
\(\Leftrightarrow m^4-2m^2-28m+49>0\)
rồi giải ra m nhá
\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+4-8m-12\)
\(=16m^2-16m-8\)
Để pt có 2 nghiệm pb \(2m^2-2m-1>0\)
bạn ơi , mik tưởng 1 nhân vs 1 vẫn bằng 1 chứ sao lại bằng 4 ạ?
PT có nghiệm `<=> \Delta' >=0`
`<=> (m-1)^2-(m^2+2)>=0`
`<=>-2m-1>=0`
`<=>m <= -1/2`
Viet: `x_1+x_2=2m-2`
`x_1x_2=m^2+2`
`x_1^2+x_2^2=10`
`<=>(x_1+x_2)^2-2x_1x_2=10`
`<=>(2m-2)^2-2(m^2+2)=10`
`<=> 2m^2-8m=10`
`<=>` \(\left[{}\begin{matrix}m=-1\left(TM\right)\\m=5\left(L\right)\end{matrix}\right.\)
Vậy `m=-1`.
Δ=(2m+2)^2-4*4m
=4m^2+8m+4-16m
=4m^2-8m+4=(2m-2)^2
Để phương trình có hai nghiệm phân biệt thì 2m-2<>0
=>m<>1
x1+x2>2 và x1x2>1
=>2m+2>2 và 4m>1
=>m>1/4
Để pt có 2 nghiệm phân biệt:
\(\Delta>0\\ \Leftrightarrow b^2-4ac>0\\ \Leftrightarrow\left(3-2m\right)^2-4.\left(m^2-m+2\right)>0\\ \Leftrightarrow9-12m+4m^2-4m^2+4m-8>0\\ \Leftrightarrow-8m>-1\\ \Leftrightarrow m< \dfrac{1}{8}\\ Vậy:m< \dfrac{1}{8}\)