Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với m = 3
Ta có: \(x^4-2.3.x^2+3^2-1=0\)
<=> \(\left(x^2-3\right)^2-1=0\Leftrightarrow\left(x^2-3-1\right)\left(x^2-3+1\right)=0\)
<=> \(\left(x^2-4\right)\left(x^2-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\pm\sqrt{2}\end{cases}}\)
b) \(x^4-2mx^2+\left(m^2-1\right)=0\)(1)
Đặt: \(x^2=t\ge0\)
Ta có phương trình ẩn t: \(t^2-2mt+\left(m^2-1\right)=0\)(2)
(1) có 3 nghiệm phân biệt <=> (2) có 1 nghiệm t = 0 và 1 nghiệm t >0
Với t = 0 thay vào (2) ta có: \(m^2-1=0\Leftrightarrow m=\pm1\)
+) Nếu m = 1; ta có: \(t^2-2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=3\end{cases}}\)tm
+) Nếu m = - 1 ta có: \(t^2+2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-2\end{cases}}\)loại
Vậy m = 1
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)
\(< =>4m^2-4m+1-4m^2+1>0\)
\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)
b , bạn dùng vi ét là ra
a, đenta' = m^2+1>0 với mọi m
=>pt luôn có 2 nghiệm phân biệt với mọi m
b, theo viet ta có:
x12+x22=7
<=>(x1+x2)2-2x1x2=7
=>(2m)2+2=7
=>4m2=5
=> m2=5/4
=>m=căn(5)/2 hoặc m=-căn(5)/2
Để pt có 2 nghiệm phân biệt:
\(\Delta>0\\ \Leftrightarrow b^2-4ac>0\\ \Leftrightarrow\left(3-2m\right)^2-4.\left(m^2-m+2\right)>0\\ \Leftrightarrow9-12m+4m^2-4m^2+4m-8>0\\ \Leftrightarrow-8m>-1\\ \Leftrightarrow m< \dfrac{1}{8}\\ Vậy:m< \dfrac{1}{8}\)