\({x^2}_1+{x^2}_2+{x^2}_3+...+{x^2}_{2017} = {{x_1+x_2+x_3+...+x_{2017}}\over 2017}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

yêu cầu đề bài đâu mà chứng minh đc. Lầy :I

21 tháng 12 2017

BĐT Cauchy-Schwarz:

\(\left(1+1+1+...+1\right)\left(x^2_1+x^2_2+...+x^2_{2017}\right)\ge\left(x_1+x_2+...+x_{2017}\right)^2\left(\text{2017 số 1}\right)\)

\(\Leftrightarrow2017\left(x^2_1+x^2_2+...+x^2_{2017}\right)\ge\left(x_1+x_2+...+x_{2017}\right)^2\)

\(\Leftrightarrow x^2_1+x^2_2+...+x^2_{2017}\ge\dfrac{\left(x_1+x_2+...+x_{2017}\right)^2}{2017}\)

Khi \(\dfrac{x_1}{1}=\dfrac{x_2}{1}=...=\dfrac{x_{2017}}{1}\Leftrightarrow x_1=x_2=...=x_{2017}\)

20 tháng 12 2017

Bạn j j biết làm bài ơi, giải hộ với. Bạn chưa biết làm thì nghĩ hộ t với. Làm được tớ cho mấy cái kẹo mút này...

4 tháng 3 2020

ĐK: \(x,y\ne0\)

\(pt\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{3}{2}\)

Do vai trò của x,y như nhau, không mất tính tổng quát, giả sử: \(x\ge y\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\Rightarrow\frac{3}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow3y\le4\Rightarrow y=1\)(vì \(y\inℕ^∗\))

Lúc đó thì \(1+\frac{1}{x}=\frac{3}{2}\Rightarrow\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)(tm)

Vậy có hai cặp số tự nhiên (x;y) thỏa mãn \(\left(1;2\right);\left(2;1\right)\)

4 tháng 3 2020

Vậy còn x<y thì sao???

7 tháng 6 2019

nhìn nó dài nhưng chỉ cần lập luận vài bước thui 

Điều kiện : \(x_1,x_2,x_3,...,x_{2000}\ne0.\)

Từ (1) suy ra \(2x_1x_2=x_2^2+1>0\Rightarrow x_1\)và    \(x_2\)cùng dấu.

Tương tự ta cũng có:

Từ (2) suy ra \(x_2\)và \(x_3\)cùng dấu 

.....................................................

Từ (1999) suy ra  \(x_{1999}\)và \(x_{2000}\)cùng dấu

Từ (2000) suy ra \(x_{2000}\)và \(x_1\)cùng dấu

Như vậy : các ẩn số \(x_1,x_2,...,x_{2000}\)cùng dấu .

Mặt khác nếu \(\left(x_1,x_2,...,x_{2000}\right)\)là một nghiệm thì \(\left(-x_1,-x_2,...,-x_{2000}\right)\)cũng là nghiệm . Do đó chỉ cần xét \(x_1,x_2,...,x_{2000}>0\).

Khi đó : \(2x_1=x_2+\frac{1}{x_2}\ge2\Rightarrow x_1\ge1\Rightarrow\frac{1}{x_1}\le1\)

              \(2x_2=x_3+\frac{1}{x_3}\ge2\Rightarrow x_2\ge1\Rightarrow\frac{1}{x_2}\le1\)

...............................................................................................

Tương tự , ta có: \(x_{2000}\ge1\Rightarrow\frac{1}{x_{2000}}\le1\)

Suy ra : \(\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\le x_1+x_2+...+x_{2000}\)

Mặt khác; nếu cộng từng vế 2000 phương trình của hệ , ta có:

\(x_1+x_2+...+x_{2000}=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_{2000}}\)

Dấu '=' xảy ra khi và chỉ khi \(x_1=x_2=...=x_{2000}=1\)

Tóm lại hệ đã cho có 2 nghiệm :

\(\left(x_1,x_2,...,x_{2000}\right)=\left(1;1;...;1\right),\left(-1;-1;...;-1\right).\)

12 tháng 5 2018

Gọi i là đại diện cho các số từ 1 đến 2011

ĐKXĐ:  \(a_i\ne0\left(i=1,2,3,..,2011\right)\)  

Xét \(a_i=1\)  Ta có: \(\frac{1}{a^{11}_i}=1>\frac{2011}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}>\frac{2011}{2048}\left(loai\right)\) 

Xét \(a_i\ge2\) Ta có: \(\frac{1}{a^{11}_i}\le\frac{1}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}\le\frac{2011}{2048}\)

Dấu "=" xảy ra khi \(a_i=2\) 

Thay vào ta có: 

\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\) 

\(\Rightarrow2M-M=\left(1+\frac{1}{2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\) 

\(\Rightarrow M=1-\frac{1}{2^{2011}}\)