Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(-\dfrac{11}{33}< 0< \dfrac{25}{16}\)
b: \(-\dfrac{17}{23}=\dfrac{-171717}{232323}\)
a) Ta có: \(\left|2.5-x\right|=1.3\)
\(\Leftrightarrow\left|x-2.5\right|=1.3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2.5=1.3\\x-2.5=-1.3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.8\\x=-1.3+2.5=1.2\end{matrix}\right.\)
Vậy: \(x\in\left\{3.8;1.2\right\}\)
b) Ta có: \(1.6-\left|x-0.2\right|=0\)
\(\Leftrightarrow\left|x-0.2\right|=1.6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-0.2=1.6\\x-0.2=-1.6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1.8\\x=-1.4\end{matrix}\right.\)
Vậy: \(x\in\left\{1.8;-1.4\right\}\)
c) Ta có: \(13^x=169\)
\(\Leftrightarrow13^x=13^2\)
\(\Leftrightarrow x=2\)
Vậy: x=2
d) Ta có: \(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\)
\(\Leftrightarrow\dfrac{2}{x}=\dfrac{x}{\dfrac{8}{25}}\)
\(\Leftrightarrow x^2=\dfrac{16}{25}\)
hay \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)
Vậy: \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)
\(|2,5-x|=1,3\)
\(\Rightarrow2,5-x=1,3\) hoặc -(2,5-x)=1,3
=>x=2,5-1,3 x-2,5=1,3
=>x=1,2 x=1,3+2,5=3,8
Vậy \(x\in\left\{1,2;3,8\right\}\)
\(1,6-|x-0,2|=0\Rightarrow|x-0,2|=1,6\)
=> x-0,2=1,6 hoặc -(x-0,2)=1,6
=>x=1,6+0,2 0,2-x=1,6
=>x=3,8 x=0,2-1,6=-1,4
Vậy \(x\in\left\{3,8;-1,4\right\}\)
\(13^x=169\Rightarrow13^x=13^2\Rightarrow x=2\)
\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\Rightarrow-2\times\dfrac{8}{25}=-x\times x\Rightarrow\dfrac{-16}{25}=-x^2\Rightarrow\dfrac{16}{25}=x^2\Rightarrow x^2=\left(\dfrac{4}{5}\right)^2=\left(-\dfrac{4}{5}\right)^2\)
\(\Rightarrow x=\dfrac{4}{5}\) hoặc \(x=-\dfrac{4}{5}\)
\(\left(x-\frac{1}{5}\right)^2=\frac{1}{25}\)
\(\Leftrightarrow x-\frac{1}{5}=\frac{1}{5}\)
\(\Rightarrow x=\frac{2}{5}\)
P/s tham khảo nha
\(\left(\frac{3}{2}-x\right)^3=-8\)
\(\Leftrightarrow\frac{3}{2}-x=-2\)
\(\Rightarrow x=\frac{7}{2}\)
P/s tham khảo nha
a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)
\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)
b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)
\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)
a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
<=> \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
<=> \(x-\frac{1}{2}=\frac{1}{3}\)
<=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{2}{6}+\frac{3}{6}=\frac{5}{6}\)
b) \(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{-2}{5}\\x+\frac{1}{2}=\frac{2}{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{5}-\frac{1}{2}=\frac{-4}{10}-\frac{5}{10}=\frac{-9}{10}\\x=\frac{2}{5}-\frac{1}{2}=\frac{4}{10}-\frac{5}{10}=\frac{-1}{10}\end{cases}}}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(x+\frac{1}{5}=\frac{3}{5}\)
\(x=\frac{3}{5}-\frac{1}{5}\)
\(x=\frac{2}{5}\)
vậy \(x=\frac{2}{5}\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(x+\frac{1}{5}=\frac{3}{5}\)
\(x=\frac{3}{5}-\frac{1}{5}\)
\(x=\frac{2}{5}\)