Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đăng tách ra cho mn giúp nhé
a, Để pt có 2 nghiệm pb
\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
\(x_1-3x_2=0\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)
\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)
\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)
\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)
\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)
Theo định lí Vi-et , ta có : \(\begin{cases}x_1+x_2=1\\x_1.x_2=-5\end{cases}\)
- \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=1-2.\left(-5\right)=11\)
- \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=1-3.\left(-5\right).1=16\)
- \(C=\left(2x_1+x_2\right)\left(2x_2+x_1\right)=\left(1+x_1\right)\left(1+x_2\right)=\left(x_1+x_2\right)+x_1.x_2+1=1-5+1=-3\)
Theo hệ thức viet
\(\int^{x1+x2=m+3\left(1\right)}_{x1x2=-2\left(m+2\right)\left(2\right)}\)
Kết hợp (1) và gt x1 = 2x2 ta có pt
3x2 = m + 3 => x2 = \(\frac{m+3}{3}\) => x1 = \(\frac{2\left(m+3\right)}{3}\)
Thay vào (2) giải pt ẩn m . sau đó kiểm tra lại
\(\Delta=\left(-m\right)^2-4\left(m+1\right)=m^2-4m-4=-\left(m+2\right)^2\)
Để có 2 nghiệm phân biệt thì \(\Delta>0\Rightarrow-\left(m+2\right)^2>0\Rightarrow m+2<0\Rightarrow m<-2\)
\(\Rightarrow x_1=\frac{m-\sqrt{m+2}}{2}\) ; \(x_2=\frac{m+\sqrt{m+2}}{2}\)
Theo đề ta có: x1 = 2.x2
\(\Rightarrow\frac{m-\sqrt{m+2}}{2}=\frac{m+\sqrt{m+2}}{2}\) \(\Rightarrow m-\sqrt{m+2}=m+\sqrt{m+2}\)
\(\Rightarrow-2\sqrt{m+2}=0\) \(\Rightarrow4.\left(m+2\right)=0\Rightarrow m+2=0\Rightarrow m=-2\) (loại)
Vậy k có x thỏa mãn
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
Làm:
a, Với m=0, ta có phương trình:
x2- (2.0+1)x + 0+0-2=0
\(\Leftrightarrow\) x2-x-2=0
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Kl:....
b, Phương trình x2- (2m+1)x +m2+m-2=0 bậc hai ẩn x
a= 1, b= -(2m+1), c= m-2
\(\Rightarrow\Delta=b^2-4ac=4m^2+4m+1-4m+8=4m^2+9\) >0 \(\forall m\)
Phương trình có hai nghiệm x1,x2 phân biệt:
Theo Vi-et ta có:
x1+x2 = \(\dfrac{-b}{a}=\dfrac{2m+1}{1}=2m+1\) kết hợp x1+3x2=5 ta được hệ: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1+3x_2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-1\\x_2=2-m\end{matrix}\right.\)
mà x1x2 = \(\dfrac{c}{a}=m-2\left(Viet\right)\)
\(\Rightarrow6m-3m^2-2+m=m-2\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)
Kl;...
\(x^2-2\cdot x\cdot\left(m-1\right)+2m-3=0\)
Ta có \(\Delta=4\cdot\left(m-1\right)^2-4\cdot\left(2m-3\right)\)
\(\Leftrightarrow\Delta=4m^2-16m+16=4\cdot\left(m-2\right)^2\ge0\forall m\)
+) Khi \(\Delta=0\Leftrightarrow m=2\Leftrightarrow x_1=x_2=\frac{2\cdot\left(m-1\right)}{2}=m-1=1\)
Khi đó \(x_1^2-2x_2=-1\) ( loại )
+) Khi \(\Delta>0\Leftrightarrow\left[{}\begin{matrix}x_1=\frac{2\cdot\left(m-1\right)+\sqrt{4\left(m-2\right)^2}}{2}=m-1+\left|m-2\right|\\x_2=\frac{2\cdot\left(m-1\right)-\sqrt{4\left(m-2\right)^2}}{2}=m-1-\left|m-2\right|\end{matrix}\right.\)
* Xét \(m\ge2\Leftrightarrow\left[{}\begin{matrix}x_1=2m-3\\x_2=1\end{matrix}\right.\)
\(\Rightarrow\left(2m-3\right)^2-2=7\Leftrightarrow\left(2m-3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}m=3\left(chon\right)\\m=0\left(loai\right)\end{matrix}\right.\)
* Xét \(m< 2\Leftrightarrow\left[{}\begin{matrix}x_1=1\\x_2=2m-3\end{matrix}\right.\)
\(\Rightarrow1-2\cdot\left(2m-3\right)=7\Leftrightarrow m=0\left(chon\right)\)
Vậy \(m\in\left\{0;3\right\}\) thì phương trình có 2 nghiệm thỏa mãn.
\(x^2-2\left(m-1\right)x+2m-3=0\)
( Δ'=b'^2-ac = \(\left(m-2\right)^2\)\(\ge0\) ∀ m ϵ R)
\(\Leftrightarrow x^2-2mx+2x+2m-3=0\)
\(\Leftrightarrow x^2-2mx+3x-x+2m-3=0\)
\(\Leftrightarrow x^2-x-2mx+2m+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)-2m\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2m+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2m+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x_{ }=1\\x_{ }=2m-3\end{matrix}\right.\)(*)
Thay (*) vào điều kiện \(x_1^2-2x_2=7\)
Ta được 2 trường hợp :
Với \(\left[{}\begin{matrix}x_1=1\\x_2=2m-3\end{matrix}\right.\)
Thay vào (*) được m=0 (1)
TH2: \(\left[{}\begin{matrix}x_1=2m-3\\x_2=1\end{matrix}\right.\)
Ta thay vào (*) và tính được :
\(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)(2)
Từ (1) và (2) suy ra \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)thỏa mãn điều kiện.
minh chiu
mìn ko trả lời đc toán lớp 9