K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

Ta có : \(x=2011\Rightarrow x+1=2012\)

Khi đó :

\(x^{10}-2012x^9+2012x^8-2012x^7+....-2012x+2012\)

\(=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...-\left(x+1\right)x+x+1\)

\(=x^{10}-x^9-x^8+x^8+x^7-x^7-x^6+...-x^2-x+x+1\)

\(=1\)

25 tháng 6 2016

Với x = 2011 => x + 1 = 2012

=> A = x10 - ( x + 1 )x9 + ( x + 1)x8 - ( x+ 1)x7 + ( x + 1 )x6 - ( x + 1 )x5+ ( x + 1 )x4 - ( x + 1 )x3 + ( x + 1)x2 - ( x + 1 )x + 2012

        = x10 - x10 - x9 + x9 + x8 - x8 - x+ x7+ x6- x6 - x5 + x5 + x4 - x4 - x3 + x+ x2 - x- x + 2012

        = -x  + 2012

Thay x=2011 vào ta được: ( - 2011 ) + 2012 = 1

10 tháng 3 2019

bài này chị bt làm rồi nhưng làm hơi dài

chị bận tối chị viết cho nha

hihihhihhi

15 tháng 12 2022

x4+2012x2+2012x+2012

=(x4-x)+(2012x2+2012x+2012)

=x(x3-1)+2012(x2+x+1)

=x(x-1) (x2+x+1) + 2012 (x2+x+1)

=(x2+x+1) [x(x-1)+2012]

=(x2+x+1) (x2-x+2012)

NV
28 tháng 11 2019

Áp dụng định lý Bezout, số dư của phép chia f(x) cho g(x) là \(f\left(1\right)\)

\(f\left(1\right)=1+2-3-4+...-2011-2012\)

\(=-2-2-2-....-2\) (\(\frac{2012}{2}=1006\) số -2)

\(=-2012\)

Vậy số dư là \(-2012\)

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Lời giải:

Ta có:
\(x^4+2012x^2-2011x+2012=x^4+x^2+2011(x^2-x+\frac{1}{4})+\frac{6037}{4}\)

\(=x^4+x^2+2011(x-\frac{1}{2})^2+\frac{6037}{4}\)

\(x^4\geq 0,x^2\geq 0, (x-\frac{1}{2})^2\geq 0, \forall x\)

\(\Rightarrow x^4+x^2+2011(x-\frac{1}{2})^2+\frac{6037}{4}\geq \frac{6037}{4}>0\) với mọi $x$

Ta có đpcm.

18 tháng 8 2019

x4+2012x2+2011x+2012

=(x4-x)+(2012x2+2012x+2012)

=x(x3-1)+2012(x2+x+1)

=x(x-1) (x2+x+1) + 2012 (x2+x+1)

=(x2+x+1) [x(x-1)+2012]

=(x2+x+1) (x2-x+2012)

1 tháng 9 2020

\(x^4+2012x^2+2011x+2012\)

\(=x^4-x+2012x^2+2012x+2012\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

18 tháng 7 2015

bạn tick đúng cho mình trước đi rồi mình giải cho

18 tháng 7 2015

12/

x=2011

=>2012=x+1

thay x+1=2012 ta được:

x2011-(x+1).x2010+(x+1).x2009-(x+1)x2008+...-(x+1).x2+(x+1).x-1

=x2011-x2011-x2010+x2010+x2009-x2009-x2008+...-x3-x2+x2+x-1

=x-1

thay x=2011 ta được:

2011-1=2010

Vậy x2011-2012x2010+2012x2009-2012x2008+...-2012x2+2012x-1=2010